
ChIP-seq with Bioconductor in R 
class by Peter Humburg and DataCamp

ChIP-seq attempts to answer how do cells know what to do?

Regulating gene expression
inside each cell a complex machinery of proteins is responsible for ensuring that 
the right genes are translated into proteins
inhibitors are proteins that bind to DNA to deactivate specific genes 
inhibitors have to be removed through the interaction with other proteins before 
genes can be expressed
then a complex of activating transcription factors can then bind to the DNA, 
allowing gene expression to proceed
this regulatory machinery ensures that a cell correctly performs its role
disruption of the process can lead to proliferation of cell growth (cancer) or a 
varitey of other diseases

ChIP stands for chromatin immunoprecipitation
a technique that can be used to extract specific proteins and the parts of the 
genome they were bound to
we can then use the DNA sequences attached to the proteins to infer the sites 
across the genome that they interact with 
do this by identifying regions of the genome that are overrepresented in the 
sequencing data
by then comparing these sites between healthy volunteers and say cancer patients 
we can potentially uncover the mechanisms that are responsible for the 
differences between them 

Accessing ChIP-seq data in R
functions used in R to interrogate sequencing data 
mapped sequence reads are typically stored in BAM files
load data from BAM files with readGAlignments() function
library(GenomicAlignments)
reads <- readGAlignments(‘file_nameʼ)
info about the chromosome reads are available via seqnames()
location on the chromosome can be accessed via start() and end()
how many reads cover any given position in the genome?
coverage(reads)

Accessing peak calls
peak calls are main units of interest in the analysis of a ChIP-seg experiment



they highlight regions of the genome with a high concentration of reads
peak calls are typically stored in BED files
each peak is associated with a score
the score quantifies the strength of this particular peak
peak calls are loaded with import.bed() function
obtain coordinates of peaks by calling the chrom() and ranges() functions
score() function provides access to peak scores

Example
# Print the 'reads' object to obtain a summary of the data
print(reads)

# Get the *start* position of the first read
start_first <- start(reads)[1]

# Get the *end* position of the last read
end_last <- end(reads)[length(reads)]

# Compute the number of reads covering each position in the selected region
cvg <- coverage(reads)

# Print a summary of the 'peaks' object
print(peaks)

# Use the score function to find the index of the highest scoring peak
max_idx <- which.max(score(peaks))

# Extract the genomic coordinates of the highest scoring peak using the `chrom` 
and `ranges` functions
max_peak_chrom <- chrom(peaks)[max_idx]
max_peak_range <- ranges(peaks)[max_idx]

output>



ChIP-seq Workflow
first step in the analysis is to take the collection of reads obtained from the 
sequencing machine 
and to locate their position in the genome
known as ‘read mappingʼ
involves identifying the best match for each read sequence in a standardised 
version of the genome (reference genome)

reads are mapped to the reference (coverage profile)
total number of reads overlapping with that position is determined
then used to identify peaks in this coverage profile
these correspond to the likely location of binding sites for the protein of interest
next step is data import 
then quality control
then analysis by comparing samples
goal is to identify interesting peaks
a peak to be of interest it needs to play a direct role in the difference between 
samples
our example identifies AR binding sites that are preferentially used in either 
primary or treatment resistant tumors
summarize results
start by creating a heatmap > helps highlight similarities and differences between 
samples
also special UpSetR package provides useful plots to assess the degree of 
similarity between samples
example of plot with UpSetR



Example
# Create a vector of colors to label groups (there are 2 samples per group)
#rep() used to replicate elements in a vector
#rep(x, times) basic syntax where x is the vector to be repeated and times equates 
to the number of times to repeat each element in the vector
group <- c(primary = rep("blue", 2), TURP = rep("red", 2))

# Plot the sample correlation matrix `sample_cor` as a heat map
# Use the group colors to label the rows and columns of the heat map
heatmap(sample_cor, ColSideColors = group, RowSideColors = group, 
        cexCol = 0.75, cexRow = 0.75, symm = TRUE)

# Create a heat map of peak read counts
# Use the group colors to label the columns of the heat map
heatmap(read_counts, ColSideColors = group, labRow = "", cexCol = 0.75)

output>



#shows that samples form blocks according to their group
#these plots help us to assess sample quality

#different samples are represented as columns
#different peaks as rows
#cell color corresponds to the height of that peak



Example - looking at the full gene sets and the differentially bound peaks 
# Take a look at the full gene sets
print(ar_sets)

# Visualise the overlap between the two groups using the `upset` function
upset(fromList(ar_sets))

# Print the genes with differential binding
print(db_sets)

# Visualise the overlap of differentially bound peaks between the two groups using 
the `upset` function
upset(fromList(db_sets))

output>



#to understand what the observed differences in protein binding actually mean it 
is helpful to associate observed peaks with genes 
#above visualises the overlap in genes associated with peak calls in the two 
groups of samples 
#the vertical bars corresponds to the size of one subset
#the dots below the vertical bars indicate which groups these genes were 
observed in
#above shows that 47 genes associated with peaks in the TURP condition and not 
in the Primary condition
#these genes act as a starting point of the investigation

ChIP-seq results summary
is there evidence for a systematic difference between groups?

Importing data
map the reads that come off the sequencing machine to the reference genome
identify the peaks (coverage profile)
*this is usually done outside of R with specialised tools 
example tools for mapping (BWA, Bowtie 2, Stampy)
example tools for calling peaks (MACS2, PeakSeq, SISSRs)

mapped sequence reads are stored in a binary file format > Binary Sequence 
Alignment/Map (BAM) file
This is what the BAM holds:



tells you how it was mapped to the reference genome
tells you which part of the reference genome is most similar to this read
how they differ
how reliable the alignment is
*much easier to use these tools than to deal with this data directly

R reads BAM files by using the Rsamtools package
provides functions to index, read, filter, and write BAM files
we import mapped reads with readGAlignments
library(GenomicAlignments)
reads <- readGAlignments(bam_file)
#this returns a GAlignments object
gives us information for each read

with BamViews we do not need to load all reads from a BAM file
saving space and increasing efficiency
example
library(GenomicRanges)
library(Rsamtools)
ranges <- GRanges(…)
views <- BamViews(bam_file, bamRanges=ranges)
#then import reads as before
reads <- readGAlignments(views)
this is nice because now we can look at a specific gene or regions of interest (like 
peak calls)

Importing peak calls
import.bed loads peak calls from a BED file



example
library(rtracklayer)
peaks <- import.bed(peak_bed, genome=‘hg19ʼ)
#adding ‘genomeʼ identifier allows additional info to be added to the ouput 
automatically
#then we use ‘peaksʼ to define views into the BAM files 
bams <- BamViews(bam_file, bamRanges=peaks)
reads <- readGAlignments(bams)

Example
# Load reads form chr20_bam file
reads <- readGAlignments(chr20_bam)

# Create a `BamViews` object for the range 29805000 - 29820000 on 
chromosome 20
bam_views <- BamViews(chr20_bam, bamRanges=GRanges("chr20", 
IRanges(start=29805000, end=29820000)))

# Load only the reads in that view
reads_sub <- readGAlignments(bam_views)

# Inspect the `reads_sub` object
str(reads_sub)

# Load peak calls from chr20_peaks
peaks <- import.bed(chr20_peaks)

# Create a BamViews object
bam_views <- BamViews(chr20_bam, bamRanges=peaks)

# Load the reads
reads <- readGAlignments(bam_views)

Visualising individual peaks in their genomic context using Gviz package
organizes data in tracks
each aligned to the same genomic coordinates 
this makes it easy to combine data from different sources into a single plot 
example Gviz plot



–
–

ideogram > tells us what chromosome we are looking at and roughly where our 
data is located on that chromosome
data track (or coverage track) > read coverage is computed as the number of 
reads overlapping a given position in the genome
example - a coverage of 5 means that 5 reads (potentially starting at different 
positions) include this location in their alignment
annotation (peaks/gene regions) track > highlight the location of certain features 
relative to the read coverage

above shows one track showing peak calls
and one visualizing transcript annotations for genes located in this part of the 
genome

genome axis track > provides more detailed information about the location on the 
chromosome

Setting-up coordinates
library(Gviz)
library(TxDb.Hsapiens.UCSC.hg19.knownGene) #this package allows us to display 
existing genomic annotations such as gene location
ideogram <- IdeogramTrack(“chr12”, “hg19”) #shows location on the chromosome
cover_track <- DataTrack(cover_ranges, window-100000, type=‘h,̓ 
name=“Coverage”)
#cover_ranges needs to be a GRanges object
#ʼwindowʼ helps us adjust the display (makes it high resolution)
#type ‘hʼ creates histogram display
peak_track <- AnnotationTrack(peaks, name=“Peaks”)
#this allows us to display the peak calls
tx <= GeneRegionTrack(TxDb.Hsapiens.UCSC.hg19.knownGene, 
chromosome=‘chr12,̓ start=101360000, end=101380000, name=“Genes”)
axis <- GenomeAxisTrack() #shows the coordinates of the plotted region



plotTracks(list(ideogram, cover_track, peak_track, tx, axis), from=101360000, 
to=101380000)

Example
# Create annotation track
peak_track <- AnnotationTrack(peak_calls, name="Peaks")

# Create data track
cover_track <- DataTrack(cover_ranges, window=10500, type="polygon", 
name="Coverage",
                         fill.mountain=c("lighgrey", "lightgrey"), col.mountain="grey")

# Produce plot
plotTracks(list(ideogram, cover_track, peak_track, GenomeAxisTrack()), 
chromosome="chr20", from=start_pos, to=end_pos)

output>

Cleaning ChIP-seq data
need to remove artifacts within your data to reduce noise

Common problems
incorrect mapped reads may produce false peaks
genomic repeats - sequences that occur over and over again
*problematic if the repeats in the sample and the reference do not match up 



low complexity regions like the ends of the arms of a chromosome (quality in 
reference sequences tends to be low in these regions)
*because there is a lot of sequence similarity over extended regions, the origin of 
reads is difficult to determine
*many regions that tend to accumulate incorrectly mapped reads are known
this is nice because now we can exclude them
example

the red line at the start of the arm of the chromosome that we are looking at marks 
the region we are looking at
*we have multiple large peaks > we have to be wary > likely chance these are 
artifacts rather than actual protein binding sites

Amplification bias
arises because of the way DNA extracted from cells is processed prior to 
sequencing
DNA fragments extracted from cells are copied multiple times prior to sequencing
needed in order to obtain enough DNA for sequencing 
however some fragments will produce more copies than others
this means some fragments will produce multiple reads 
which can pile up to give the qppearance of a peak in coverage

Quality Control Reports
usefult to obtain summaries of all these potential problems in a systematic way 
across all samples in a study



–
–

ChiPQC is an R package that produces an HTML report in your working directory 
with standard quality metrics for all samples in your study presented as a series of 
tables and plots
maps the BAM and BED files to a .csv file with sampleID and other desired 
columns (ie. condition, tissue, treatment, …)
example
library(ChIPQC)
qc_report <- ChIPQC(experiment=“sample_info.csv”, annotatin=“hg19”)
ChIPQCreport(qc_report)

How to clean the data
standard practice to group all reads that share the same mapping coordinates and 
retain only one read alignment per group
this guards against amplification bias
reads that map to more than one location in the genome > may imply incorrect 
alignment > remove prior to peak calling
reads with low mapping quality > the same, may imply incorrect alignment > 
remove prior to peak calling
lastly remove peaks in blacklisted regions

some peak callers have the ability to do this for you
can also find a list of these regions created by the ENCODE project

a side > ENCODE aims to create a catologue of functional elements in the human 
genome

Example
# Find all overlaps between peaks and blacklisted regions
blacklisted <- findOverlaps(peaks, blacklist.hg19, type="within")

# Create a plot to display read coverage together with peak calls and blacklisted 
regions in the selected region
cover_track <- DataTrack(cover, window=10500, type="polygon", 
name="Coverage",
                         fill.mountain=c("lighgrey", "lightgrey"), col.mountain="grey")

# Calculate peak_track and region_track, plot plotTracks
peak_track <- AnnotationTrack(peaks, name="Peaks", fill="orange")
region_track <- GeneRegionTrack(region, name="Blacklist")
plotTracks(list(ideogram, cover_track, peak_track, region_track, 
GenomeAxisTrack()),
           chromosome="chr21", from=start(region)-1000, to=end(region)+1000)

# Remove all blacklisted peaks
clean_peaks <- peaks[-from(blacklisted)]



output>

# Load reads with mapping qualities by requesting the "mapq" entries
reads <- readGAlignments(bam_file, param=ScanBamParam(what="mapq"))

# Identify good quality alignments
high_mapq <- mcols(reads)$mapq >= 20

boxplot(mcols(reads)$mapq ~ high_mapq, xlab="good quality alignments", 
ylab="mapping quality")

# Remove low quality alignments
reads_good <- subset(reads, high_mapq)

output>



Assessing enrichment
need to extend reads
remember sequencing is generated by DNA fragments that the protein of interest 
is bound to
*this results in several reads from both ends of the fragment mapping to similar 
locations in the genome
clustering either sided of the protein binding site
*signal becomes a lot clearer once reads are extended to the length of the full 
fragment
reads from both ends will now overlap and form a more pronounced peak 
visual example - prior to aggregation



green dot representing new more pronounced peak

further example
top two coverage tracks read coverage for the forward and reverse strand 
respectively 
the third represents total coverage after reads have been extended to the mean 
fragment length

Extending reads



resize() is from the GenomicRanges package
allows you to specify the desired width of a fragment via the ʼwidthʼ argument

Next enrichment
how does coverage in peaks compare to coverage in other parts of the genome?
need to partition the genome into short intervals
example into 200 base pair long intervals
then assign each bin either to a peak, a blacklisted region, or background

with R:



countOverlaps() counts the number of fragments in each of the selected bins 

*wrapping the above code for convenience
count_bins <- function(reads, target, bins){

overlap <- from(findOverlaps(bins, targe))
target_bins <- bins[overlap, ]
target_bins$score <- contOverlaps(target_bins, reads)
target_bins

}

Coverage for the blacklisted regions 
peak_bins <- count_bins(reads_ext, peaks, bins)
bl_bins <- count_bins(reads_ext, blacklist.hg19, bins)

Background coverage
measure background coverage is to consider the coverage for all remaining bins 
after peaks and blacklists are removed
we can do this by subsetting
#remove all bins already accounted for
bkg_bins <- subset(bins, !bins %in% peak_bins & !bins %in% bl_bins)
#count number of reads overlapping with each remaining bin
bkg_bins$score <- countOverlaps(bkg_bins, reads_ext)



Example
# Extend reads to the average fragment length of 183 bp
reads_ext <- resize(reads_gr, width=183)

# Compute coverage
cover <- coverage(reads_ext)

# Prepare read counts for plotting by organising them in data frames
peak_scores <- data.frame(source="peaks", fragments=peak_bins$score)
bl_scores <- data.frame(source="blacklist", fragments=bl_bins$score)
bkg_scores <- data.frame(source="background", fragments=bkg_bins$score)
scores <- rbind(peak_scores, bl_scores, bkg_scores)

# Create a boxplot of the read counts by bin type
ggplot(scores, aes(y=fragments, x=source)) + geom_boxplot()

output>

Intro to differential binding
our example > examiing primary vs treatment resistant prostate tumors
goal is to identify molecular mechanisms that cause this difference in response
are samples from the same group generally similar?
are samples from different groups different?
what are the differences?



PCA is one method we can use to answer these questions
PCA is a method used to uncover some of the underlying structure within a 
dataset
PCA identifies the directions (or principle components) with the most variation 
between data points
using the first two principle components we can define a plane that passes 
through the cloud of data points 
goal is to minimize the overall distance between points and the plane as much as 
possible
visualizing:

by rotating the data we can get a view that highlights the main differences 
between data points
we project this view onto a 2D scatter plot (PCA plot)



we can create this with the ChIPQC package
qc_result <- ChIPQC(“sample.csv”, “hg19”)
*need to create a consistent set of peaks across all samples for this to work
#from the DiffBind package we use dba.count() which will provide us with a 
suitable set of concensus peaks
#ʼsummitsʼ argument determines the width of the resulting peaks
counts <- dba.count(qc_results, summits=250)
plotPrincomp(counts)

Another option - hierarchical clustering
clustering is based on the observed read counts for each peak
uses the pairwise distances between samples to build a tree 
compute this way:
distance <- dist(t(coverage))
#computes the distance between the rows of a matrix
#t is for transpose and this will give you the distance between samples
#hclust will create a dendrogram
dendro <- hclust(distance)
#plot dendrogram
plot(dendro)



Employ this clustering with a heatmap
DiffBind package allows us to facilitate this
dba.plotHeatmap(peaks, maxSites = peak_count, correlations = FALSE)
#arguments ensure all peaks are plotted instead of correlations between samples

Example
# Compute the pairwise distances between samples using `dist`
cover_dist <- dist(t(cover))

# Use `hclust()` to create a dendrogram from the distance matrix
cover_dendro <- hclust(cover_dist)

# Plot the dendrogram
plot(cover_dendro)

output>

# Print the `peaks` object
print(peaks)

# Obtain the coordinates of the merged peaks
merged_peaks <- peaks$merged

# Extract the number of peaks present in the data
peak_count <- nrow(merged_peaks)



# Create a heatmap using the `dba.plotHeatmap()` function
dba.plotHeatmap(peaks, maxSites = peak_count, correlations = FALSE)

ouput>

Testing for differential binding
do statistical analysis with DiffBind package
which interfaces to use other tools such as DESeq2 or edgeR

Start with creating a consistent shared peak set
and then counting reads in peak set
can use ChIPQC output as input to the analysis
with R:
peak_counts <- dba.count(qc_output, summits=250)
#summits argument signals that peaks should be re-centered around the 
consensus peak
#250 represents the width of the resulting peak on either side
#this will give us 500 base pair wide peaks

to run the analysis we need to tell DiffBind how the samples should be split into 
groups
peak_counts <- dba.contrast(peak_counts, categories = DBA_CONDITION)
addition supported categories:



*Background coverage can easily be mistaken for peaks 
*control samples can be used to assess background coverage in the absence of 
ChIP signal to filter out this noise

Running the analysis
bind_diff <- dba.analyze(peak_counts)

Looking at the results
dba.plotPCA(bind_diff, DBA_Condition, contrast=1)
dba.plotHeatmap(bind_diff, DBA_Condition, contrast=1)
these will give you some sense of the extent to which the two groups differ in their 
binding patterns

Example
# Examine the ar_binding object
print(ar_binding)

# Identify the category corresponding to the tumor type contrast
contrast <- DBA_CONDITION

# Establish the contrast to compare the two tumor types
dba_peaks <- dba.contrast(ar_binding, categories=contrast, minMembers=2)

# Examine the dba_peaks object to confirm that the contrast has been added
print(dba_peaks)

# Examine the `ar_binding` object to confirm that it contains the required contrast
print(ar_binding)



# Run the differential binding analysis
ar_diff <- dba.analyze(ar_binding)

# Examine the result
print(ar_diff)

# Create a PCA plot using all peaks
dba.plotPCA(ar_diff, DBA_CONDITION)

output>

# Create a PCA plot using only differentially bound peaks
dba.plotPCA(ar_diff, DBA_CONDITION, contrast = 1)

output>



# Create a PCA plot using only differentially bound peaks
dba.plotPCA(ar_diff, DBA_CONDITION, contrast = 1)

output>

# Create a heatmap using only differentially bound peaks
dba.plotHeatmap(ar_diff, DBA_CONDITION, contrast=1, correlations = FALSE)

output>



Further visualizing the results
first weʼll look at MA plots
visualises the relationship between change in peak intensity between conditions 
and average peak intensity
can do this with the DiffBind package as well
example
dba.plotMA(dba_object)
output>
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shows the log peak intensity on the x-axis 
log fold change on the y-axis
above - most data points have been smoothed into a density cloud (this is done to 
make it easier to see concentration)
points corresponding to differentially bound peaks are highlighted in pink
always make sure that proper normalization has been performed

recap on differential binding
refers to the identification and comparison of differenecs in the binding patterns 
of a protein (often a transcription factor) between two or more conditions or 
experimental groups
recap on the process again

ChIP-seq experiemnt
sequencing
read alignment to a reference genome
peak calling - regions of the genome with a high density of aligned reads
differential binding analysis - identify genomic regions where the binding of 
the protein significantly differs between conditions
statistical testing - assess significance of peaks vs random chance
visualization

Additional plots
dba.plotVolcano(dba_object)
output>



FDR stands for false discovery rate
volcano plot plots negative log p-values (or false discovery rates) as a function of 
log fold change
peaks with significant evidence for differential binding are highlighted in pink
volcanos are useful because they display the significance of the change in peak 
intensity together with the magnitude of the change

dba.plotBox(dba_object)
output>



Interpreting peaks
we are really interested in gene regulation
we are attempting to identify genes that are regulated by the binding of certain 
transcription factors
commonly we assign the peak to the closest gene
to visualize:

to do this we need to obtain info about gene locations
then we can assign peaks to the closest genes
then we can create lists of genes with changes in protein binding between the two 
groups 



Transcript annotations
ʼTxDbʼ packages provide info about the location of all known transcripts and genes 
in a given genome 
remember Entrez IDs > unique gene identifiers

Annotating peaks
annotates peaks with their closest gene
example
library(ChIPpeakAnno)
annoPeaks(peaks, human_genes, bindingType=‘startSite ,̓ 
bindingRegion=c(-5000,5000))
#this requires two GRanges objects (peaks and human_genes for this example)
#one has peak coordinates
#the other has annotations
#bindingType gives instructions for how to match these two GRange objects
#bindingRegion for this example requires peaks to be within 5 kilo bases of the 
transcription start site

Visualize similarites and differences
can start with a Venn
dba.plotVenn(peaks, mask=1�2)

for larger samples UpSet plots are better



Example
# Extract peaks from ChIPQCexperiment object
peak_calls <- peaks(ar_calls)

# Only keep samples that passed QC
peak_passed <- peak_calls[qc_pass]

# Find overlaps between peak sets
peaks_combined <- findOverlapsOfPeaks(peak_passed[[1]], peak_passed[[2]], 
peak_passed[[3]], peak_passed[[4]], maxgap=50)

# Examine merged peak set
print(peaks_combined)

# Obtain gene symbols
gene_symbol <- select(org.Hs.eg.db, keys=human_genes$gene_id, 
columns="SYMBOL", keytype="ENTREZID")

# Examine the structure of the returned annotations
str(gene_symbol)

# Add gene symbols to gene coordinates
human_genes$symbol <- gene_symbol$SYMBOL



# Examine output
print(human_genes)

# Annotate peaks with closest gene
peak_anno <- annoPeaks(peaks_merged, human_genes, bindingType="startSite", 
bindingRegion=c(-5000,5000))

# How many peaks were found close to genes?
length(peak_anno)

# Where are peaks located relative to genes?
table(peak_anno$insideFeature)

# Create Venn diagram
dba.plotVenn(ar_diff, mask=1�4)

output>

# Convert the matrix of called peaks into a data frame
called_peaks <- as.data.frame(ar_diff$called)

# Create UpSet plot
upset(called_peaks, keep.order = TRUE, sets=colnames(ar_diff$called), 
order.by="freq")

ouput>



Interpreting affected gene lists
what are these genes doing?
gene set enrichment approach
this involves defining groups of genes that are related by their function in some 
way
visualize:



large proportion of peak associated genes like set 2 are likely to be of relevance
finding enriched gene sets
library(chipenrich)
chipenrich(peaks, genome=ʼhg19,̓ genesets=‘hallmark ,̓ locusdef=‘nearest_tssʼ)
this package allows you to provide peak locations directly without having to 
annotate first
‘genomeʼ argument indicates reference genome
‘genesetsʼ selects one of several supported genesets
‘locusdefʼ determines how peaks hould be associated with genes #here we use 
closest transcription start site

Example
# Plot distribution of distances between peaks and transcription start sites
plot_dist_to_tss(peaks, genome = "hg19")

# Plot relationship between gene length and presence of peaks
plot_chipenrich_spline(peaks, genome = "hg19", mappability=50)

output>



Break down of each plot:

1. **Plot distribution of distances between peaks and transcription start sites:**
   - This plot visualizes the distribution of distances between ChIP-seq peaks 
(likely regions of interest in the genome, such as regions where a protein binds) 
and transcription start sites (TSS) of genes. The x-axis represents the distances 



between the peaks and TSS, while the y-axis shows the frequency of occurrences 
for each distance range. This plot provides insights into the genomic locations of 
the identified peaks relative to gene transcription start sites.

2. **Plot relationship between gene length and presence of peaks:**
   - This plot explores the relationship between the length of genes and the 
presence of ChIP-seq peaks. It likely uses a spline curve to depict the trend. The 
x-axis represents gene lengths, and the y-axis shows the presence or absence of 
ChIP-seq peaks. The curve's shape indicates whether there's a correlation 
between gene length and the likelihood of having peaks. This type of analysis 
helps identify potential associations between gene characteristics (like length) and 
the binding patterns observed in ChIP-seq experiments.

Example contʼd
# Select all peaks with higher intensity in treatment resistant samples
turp_peaks <- peaks_binding[, "GSM1598218"] + peaks_binding[, "GSM1598219"] 
< peaks_binding[, "GSM1598223"] + peaks_binding[, "GSM1598225"]

# Run enrichment analysis
enrich_turp <- chipenrich(peaks_comb[turp_peaks, ], genome="hg19", 
                   genesets = "hallmark", out_name = NULL, 
                   locusdef = "nearest_tss", qc_plots=FALSE)

# Print the results of the analysis
print(enrich_turp$results)

output>

        Geneset.Type Geneset.ID                                Description
1  Hallmark (MSigDB)      M5957               HALLMARK_PANCREAS_BETA_CELLS
2  Hallmark (MSigDB)      M5916                    HALLMARK_APICAL_SURFACE
3  Hallmark (MSigDB)      M5950               HALLMARK_ALLOGRAFT_REJECTION
4  Hallmark (MSigDB)      M5921                        HALLMARK_COMPLEMENT
5  Hallmark (MSigDB)      M5915                   HALLMARK_APICAL_JUNCTION
6  Hallmark (MSigDB)      M5908                 HALLMARK_ANDROGEN_RESPONSE
7  Hallmark (MSigDB)      M5946                       HALLMARK_COAGULATION
8  Hallmark (MSigDB)      M5944                      HALLMARK_ANGIOGENESIS
9  Hallmark (MSigDB)      M5902                         HALLMARK_APOPTOSIS
10 Hallmark (MSigDB)      M5934             HALLMARK_XENOBIOTIC_METABOLISM
11 Hallmark (MSigDB)      M5892           
HALLMARK_CHOLESTEROL_HOMEOSTASIS
12 Hallmark (MSigDB)      M5924                  HALLMARK_MTORC1_SIGNALING
13 Hallmark (MSigDB)      M5913         



HALLMARK_INTERFERON_GAMMA_RESPONSE
14 Hallmark (MSigDB)      M5907            HALLMARK_ESTROGEN_RESPONSE_LATE
15 Hallmark (MSigDB)      M5911         
HALLMARK_INTERFERON_ALPHA_RESPONSE
16 Hallmark (MSigDB)      M5901                    HALLMARK_G2M_CHECKPOINT
17 Hallmark (MSigDB)      M5937                        HALLMARK_GLYCOLYSIS
18 Hallmark (MSigDB)      M5906           HALLMARK_ESTROGEN_RESPONSE_EARLY
19 Hallmark (MSigDB)      M5891                           HALLMARK_HYPOXIA
20 Hallmark (MSigDB)      M5923           HALLMARK_PI3K_AKT_MTOR_SIGNALING
21 Hallmark (MSigDB)      M5926                    HALLMARK_MYC_TARGETS_V1
22 Hallmark (MSigDB)      M5935             HALLMARK_FATTY_ACID_METABOLISM
23 Hallmark (MSigDB)      M5941                    HALLMARK_UV_RESPONSE_UP
24 Hallmark (MSigDB)      M5925                       HALLMARK_E2F_TARGETS
25 Hallmark (MSigDB)      M5939                       HALLMARK_P53_PATHWAY
26 Hallmark (MSigDB)      M5930 
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION
27 Hallmark (MSigDB)      M5953                 HALLMARK_KRAS_SIGNALING_UP
28 Hallmark (MSigDB)      M5893                   HALLMARK_MITOTIC_SPINDLE
29 Hallmark (MSigDB)      M5956                 HALLMARK_KRAS_SIGNALING_DN
30 Hallmark (MSigDB)      M5890           HALLMARK_TNFA_SIGNALING_VIA_NFKB
31 Hallmark (MSigDB)      M5947               HALLMARK_IL2_STAT5_SIGNALING
32 Hallmark (MSigDB)      M5932             HALLMARK_INFLAMMATORY_RESPONSE
33 Hallmark (MSigDB)      M5909                        HALLMARK_MYOGENESIS
34 Hallmark (MSigDB)      M5942                    HALLMARK_UV_RESPONSE_DN
35 Hallmark (MSigDB)      M5951                   HALLMARK_SPERMATOGENESIS
36 Hallmark (MSigDB)      M5898                        HALLMARK_DNA_REPAIR
37 Hallmark (MSigDB)      M5896                HALLMARK_TGF_BETA_SIGNALING
38 Hallmark (MSigDB)      M5948              HALLMARK_BILE_ACID_METABOLISM
39 Hallmark (MSigDB)      M5938   
HALLMARK_REACTIVE_OXIGEN_SPECIES_PATHWAY
40 Hallmark (MSigDB)      M5922         
HALLMARK_UNFOLDED_PROTEIN_RESPONSE
41 Hallmark (MSigDB)      M5895        
HALLMARK_WNT_BETA_CATENIN_SIGNALING
42 Hallmark (MSigDB)      M5949                        HALLMARK_PEROXISOME
43 Hallmark (MSigDB)      M5910                 HALLMARK_PROTEIN_SECRETION
44 Hallmark (MSigDB)      M5905                      HALLMARK_ADIPOGENESIS
45 Hallmark (MSigDB)      M5919                HALLMARK_HEDGEHOG_SIGNALING
46 Hallmark (MSigDB)      M5936         
HALLMARK_OXIDATIVE_PHOSPHORYLATION
47 Hallmark (MSigDB)      M5897           HALLMARK_IL6_JAK_STAT3_SIGNALING
48 Hallmark (MSigDB)      M5903                   HALLMARK_NOTCH_SIGNALING
49 Hallmark (MSigDB)      M5945                   HALLMARK_HEME_METABOLISM



50 Hallmark (MSigDB)      M5928                    HALLMARK_MYC_TARGETS_V2
       P.value       FDR      Effect   Odds.Ratio   Status N.Geneset.Genes
1  0.007210798 0.3366696   2.0650386 7.885602e+00 enriched              39
2  0.013466783 0.3366696   1.9070347 6.733094e+00 enriched              44
3  0.055226772 0.9204462   1.2000853 3.320400e+00 enriched             200
4  0.099016124 0.9433876   1.0309644 2.803768e+00 enriched             200
5  0.123477705 0.9433876   0.9641464 2.622548e+00 enriched             200
6  0.131277605 0.9433876   1.1296276 3.094504e+00 enriched             101
7  0.132074264 0.9433876   1.1301876 3.096237e+00 enriched             138
8  0.153006954 0.9562935   1.4901855 4.437919e+00 enriched              36
9  0.261645178 0.9832372   0.8382321 2.312275e+00 enriched             161
10 0.270128932 0.9832372   0.8252106 2.282361e+00 enriched             200
11 0.307096452 0.9832372   1.0572811 2.878534e+00 enriched              74
12 0.308608297 0.9832372   0.7603828 2.139095e+00 enriched             200
13 0.333942626 0.9832372   0.7215693 2.057660e+00 enriched             199
14 0.369629032 0.9832372   0.6680817 1.950492e+00 enriched             200
15 0.370567850 0.9832372   0.9268041 2.526422e+00 enriched              97
16 0.414857491 0.9832372   0.6078045 1.836395e+00 enriched             200
17 0.424828541 0.9832372   0.5940336 1.811280e+00 enriched             200
18 0.519424905 0.9832372   0.4789070 1.614309e+00 enriched             200
19 0.565013411 0.9832372   0.4292091 1.536042e+00 enriched             199
20 0.636750814 0.9832372   0.4865777 1.626740e+00 enriched             105
21 0.762665708 0.9832372   0.3113319 1.365242e+00 enriched             198
22 0.766003568 0.9832372   0.3061772 1.358223e+00 enriched             158
23 0.801835270 0.9832372   0.2585896 1.295102e+00 enriched             158
24 0.848185660 0.9832372   0.1971499 1.217927e+00 enriched             200
25 0.941704828 0.9832372   0.0751372 1.078032e+00 enriched             200
26 0.596772045 0.9832372  -0.5446876 5.800230e-01 depleted             199
27 0.632976060 0.9832372  -0.4913727 6.117860e-01 depleted             200
28 0.761266682 0.9832372  -0.3114038 7.324181e-01 depleted             200
29 0.787106058 0.9832372  -0.2781636 7.571730e-01 depleted             199
30 0.791398025 0.9832372  -0.2711955 7.624674e-01 depleted             200
31 0.811615352 0.9832372  -0.2443141 7.832416e-01 depleted             200
32 0.822419900 0.9832372  -0.2304902 7.941442e-01 depleted             200
33 0.842358130 0.9832372  -0.2043783 8.151539e-01 depleted             200
34 0.972238830 0.9832372 -13.4793606 1.399549e-06 depleted             144
35 0.973404957 0.9832372 -12.7673218 2.852480e-06 depleted             135
36 0.973687327 0.9832372 -12.1263283 5.415051e-06 depleted             149
37 0.975154999 0.9832372 -11.9548439 6.428021e-06 depleted              54
38 0.975942720 0.9832372 -12.5187551 3.657411e-06 depleted             111
39 0.976698181 0.9832372 -11.5268656 9.861566e-06 depleted              49
40 0.976752526 0.9832372 -12.3566713 4.300964e-06 depleted             112
41 0.977378938 0.9832372 -11.9380109 6.537139e-06 depleted              42



42 0.977618249 0.9832372 -12.5373207 3.590135e-06 depleted             104
43 0.978424277 0.9832372 -12.8760081 2.558708e-06 depleted              96
44 0.978983596 0.9832372 -13.5316571 1.328238e-06 depleted             200
45 0.979401399 0.9832372 -12.4368600 3.969541e-06 depleted              36
46 0.979612012 0.9832372 -13.1903447 1.868556e-06 depleted             197
47 0.979696172 0.9832372 -12.5388526 3.584640e-06 depleted              87
48 0.980112685 0.9832372 -11.8219938 7.341306e-06 depleted              32
49 0.980135570 0.9832372 -13.6090416 1.229330e-06 depleted             199
50 0.983237225 0.9832372 -11.9429655 6.504830e-06 depleted              58
   N.Geneset.Peak.Genes Geneset.Avg.Gene.Length Geneset.Peak.Genes
1                     2               187356.28         5126, 6726
2                     2               209852.25          351, 1946
3                     3               113673.32  5788, 7042, 10225
4                     3               141499.61    716, 2153, 4324
5                     3               157525.62  3675, 5788, 25945
6                     2               161568.85        9510, 84159
7                     2               116728.85          716, 4324
8                     1               155037.22                351
9                     2               134149.50          351, 7042
10                    2               102425.97         4128, 7042
11                    1               107865.30               6282
12                    2               110946.77        5033, 10097
13                    2               121400.47         716, 84159
14                    2               118319.26           374, 799
15                    1                89686.42                716
16                    2               135063.36         1946, 7514
17                    2               133232.24         2584, 5033
18                    2               149021.69           374, 799
19                    2               169486.20         2584, 5033
20                    1               142428.66              10097
21                    1                77524.61               7514
22                    1               102593.39               4128
23                    1               117646.30               4128
24                    1                86673.06               7514
25                    1               100589.85                351
26                    1               219793.90                374
27                    1               206398.79              22903
28                    1               155311.85                613
29                    1               171727.17               7042
30                    1               151486.12                374
31                    1               143893.89               5033
32                    1               152045.26               5099
33                    1               151066.60                351



34                    0               296799.65                   
35                    0               151024.85                   
36                    0                63996.66                   
37                    0               162524.91                   
38                    0               115350.19                   
39                    0               101098.65                   
40                    0                83518.00                   
41                    0               178339.31                   
42                    0               102425.82                   
43                    0               146945.33                   
44                    0               112868.34                   
45                    0               281805.72                   
46                    0                71107.53                   
47                    0               100468.59                   
48                    0               161979.34                   
49                    0               100340.71                   
50                    0                61808.02                   

# Examine the top gene sets
head(enrich_primary$results)

# Extract the gene IDs for the top ranking set
genes <- enrich_primary$results$Geneset.Peak.Genes[1]

# Split gene IDs into a vector
gene_ids <- strsplit(genes, ', ')[[1]]

# Convert gene IDs to gene symbols
gene_symbol <- select(org.Hs.eg.db, keys=gene_ids, columns="SYMBOL", 
keytype="ENTREZID")

# Print the result
print(gene_symbol)

output>
head(enrich_primary$results)
   Geneset.Type Geneset.ID                                      Description
1 KEGG Pathways   hsa04110                                       Cell cycle
2 KEGG Pathways   hsa00533 Glycosaminoglycan biosynthesis - keratan sulfate
3 KEGG Pathways   hsa04115                            p53 signaling pathway
4 KEGG Pathways   hsa00052                             Galactose metabolism
5 KEGG Pathways   hsa00480                           Glutathione metabolism



6 KEGG Pathways   hsa04977                 Vitamin digestion and absorption
      P.value       FDR   Effect Odds.Ratio   Status N.Geneset.Genes
1 0.001626919 0.3335183 2.009188   7.457261 enriched             123
2 0.009044566 0.6339066 2.837527  17.073498 enriched              15
3 0.009276682 0.6339066 1.978029   7.228479 enriched              68
4 0.014550627 0.6935708 2.609276  13.589215 enriched              27
5 0.019359318 0.6935708 2.499356  12.174651 enriched              50
6 0.020299634 0.6935708 2.468228  11.801512 enriched              24
  N.Geneset.Peak.Genes Geneset.Avg.Gene.Length Geneset.Peak.Genes
1                    3                88319.47  4616, 8555, 10912
2                    1               149392.57               2683
3                    2               114026.68        4616, 10912
4                    1                67549.17               2683
5                    1                45632.53               4257
6                    1                96953.92               4363

# Extract the gene IDs for the top ranking set
genes <- enrich_primary$results$Geneset.Peak.Genes[1]

# Split gene IDs into a vector
gene_ids <- strsplit(genes, ', ')[[1]]

# Convert gene IDs to gene symbols
gene_symbol <- select(org.Hs.eg.db, keys=gene_ids, columns="SYMBOL", 
keytype="ENTREZID")
'select()' returned 1�1 mapping between keys and columns

# Print the result
print(gene_symbol)
  ENTREZID  SYMBOL
1     4616 GADD45B
2     8555  CDC14B
3    10912 GADD45G

General format of KEGG URLs:
https://www.kegg.jp/pathway/pathway/<pathway_id>+<gene_id>+...+<gene_id>

# This is the base URL for all KEGG pathways
base_url <- "https://www.kegg.jp/pathway/"

# Add pathway ID to URL
path_url <- paste0(base_url, top_path)



# Collapse gene IDs into selection string
gene_select <- paste(genes, collapse="+")

# Add gene IDs to URL
path_url <- paste(path_url, gene_select, sep="+")

ouput>
https://www.kegg.jp/pathway/hsa04110+4616+8555+10912


