
ChIP-seq with Bioconductor in R
class by Peter Humburg and DataCamp

ChIP-seq attempts to answer how do cells know what to do?

Regulating gene expression
inside each cell a complex machinery of proteins is responsible for ensuring that
the right genes are translated into proteins
inhibitors are proteins that bind to DNA to deactivate specific genes
inhibitors have to be removed through the interaction with other proteins before
genes can be expressed
then a complex of activating transcription factors can then bind to the DNA,
allowing gene expression to proceed
this regulatory machinery ensures that a cell correctly performs its role
disruption of the process can lead to proliferation of cell growth (cancer) or a
varitey of other diseases

ChIP stands for chromatin immunoprecipitation
a technique that can be used to extract specific proteins and the parts of the
genome they were bound to
we can then use the DNA sequences attached to the proteins to infer the sites
across the genome that they interact with
do this by identifying regions of the genome that are overrepresented in the
sequencing data
by then comparing these sites between healthy volunteers and say cancer patients
we can potentially uncover the mechanisms that are responsible for the
differences between them

Accessing ChIP-seq data in R
functions used in R to interrogate sequencing data
mapped sequence reads are typically stored in BAM files
load data from BAM files with readGAlignments() function
library(GenomicAlignments)
reads <- readGAlignments(‘file_nameʼ)
info about the chromosome reads are available via seqnames()
location on the chromosome can be accessed via start() and end()
how many reads cover any given position in the genome?
coverage(reads)

Accessing peak calls
peak calls are main units of interest in the analysis of a ChIP-seg experiment

they highlight regions of the genome with a high concentration of reads
peak calls are typically stored in BED files
each peak is associated with a score
the score quantifies the strength of this particular peak
peak calls are loaded with import.bed() function
obtain coordinates of peaks by calling the chrom() and ranges() functions
score() function provides access to peak scores

Example
Print the 'reads' object to obtain a summary of the data
print(reads)

Get the *start* position of the first read
start_first <- start(reads)[1]

Get the *end* position of the last read
end_last <- end(reads)[length(reads)]

Compute the number of reads covering each position in the selected region
cvg <- coverage(reads)

Print a summary of the 'peaks' object
print(peaks)

Use the score function to find the index of the highest scoring peak
max_idx <- which.max(score(peaks))

Extract the genomic coordinates of the highest scoring peak using the `chrom`
and `ranges` functions
max_peak_chrom <- chrom(peaks)[max_idx]
max_peak_range <- ranges(peaks)[max_idx]

output>

ChIP-seq Workflow
first step in the analysis is to take the collection of reads obtained from the
sequencing machine
and to locate their position in the genome
known as ‘read mappingʼ
involves identifying the best match for each read sequence in a standardised
version of the genome (reference genome)

reads are mapped to the reference (coverage profile)
total number of reads overlapping with that position is determined
then used to identify peaks in this coverage profile
these correspond to the likely location of binding sites for the protein of interest
next step is data import
then quality control
then analysis by comparing samples
goal is to identify interesting peaks
a peak to be of interest it needs to play a direct role in the difference between
samples
our example identifies AR binding sites that are preferentially used in either
primary or treatment resistant tumors
summarize results
start by creating a heatmap > helps highlight similarities and differences between
samples
also special UpSetR package provides useful plots to assess the degree of
similarity between samples
example of plot with UpSetR

Example
Create a vector of colors to label groups (there are 2 samples per group)
#rep() used to replicate elements in a vector
#rep(x, times) basic syntax where x is the vector to be repeated and times equates
to the number of times to repeat each element in the vector
group <- c(primary = rep("blue", 2), TURP = rep("red", 2))

Plot the sample correlation matrix `sample_cor` as a heat map
Use the group colors to label the rows and columns of the heat map
heatmap(sample_cor, ColSideColors = group, RowSideColors = group,
 cexCol = 0.75, cexRow = 0.75, symm = TRUE)

Create a heat map of peak read counts
Use the group colors to label the columns of the heat map
heatmap(read_counts, ColSideColors = group, labRow = "", cexCol = 0.75)

output>

#shows that samples form blocks according to their group
#these plots help us to assess sample quality

#different samples are represented as columns
#different peaks as rows
#cell color corresponds to the height of that peak

Example - looking at the full gene sets and the differentially bound peaks
Take a look at the full gene sets
print(ar_sets)

Visualise the overlap between the two groups using the `upset` function
upset(fromList(ar_sets))

Print the genes with differential binding
print(db_sets)

Visualise the overlap of differentially bound peaks between the two groups using
the `upset` function
upset(fromList(db_sets))

output>

#to understand what the observed differences in protein binding actually mean it
is helpful to associate observed peaks with genes
#above visualises the overlap in genes associated with peak calls in the two
groups of samples
#the vertical bars corresponds to the size of one subset
#the dots below the vertical bars indicate which groups these genes were
observed in
#above shows that 47 genes associated with peaks in the TURP condition and not
in the Primary condition
#these genes act as a starting point of the investigation

ChIP-seq results summary
is there evidence for a systematic difference between groups?

Importing data
map the reads that come off the sequencing machine to the reference genome
identify the peaks (coverage profile)
*this is usually done outside of R with specialised tools
example tools for mapping (BWA, Bowtie 2, Stampy)
example tools for calling peaks (MACS2, PeakSeq, SISSRs)

mapped sequence reads are stored in a binary file format > Binary Sequence
Alignment/Map (BAM) file
This is what the BAM holds:

tells you how it was mapped to the reference genome
tells you which part of the reference genome is most similar to this read
how they differ
how reliable the alignment is
*much easier to use these tools than to deal with this data directly

R reads BAM files by using the Rsamtools package
provides functions to index, read, filter, and write BAM files
we import mapped reads with readGAlignments
library(GenomicAlignments)
reads <- readGAlignments(bam_file)
#this returns a GAlignments object
gives us information for each read

with BamViews we do not need to load all reads from a BAM file
saving space and increasing efficiency
example
library(GenomicRanges)
library(Rsamtools)
ranges <- GRanges(…)
views <- BamViews(bam_file, bamRanges=ranges)
#then import reads as before
reads <- readGAlignments(views)
this is nice because now we can look at a specific gene or regions of interest (like
peak calls)

Importing peak calls
import.bed loads peak calls from a BED file

example
library(rtracklayer)
peaks <- import.bed(peak_bed, genome=‘hg19ʼ)
#adding ‘genomeʼ identifier allows additional info to be added to the ouput
automatically
#then we use ‘peaksʼ to define views into the BAM files
bams <- BamViews(bam_file, bamRanges=peaks)
reads <- readGAlignments(bams)

Example
Load reads form chr20_bam file
reads <- readGAlignments(chr20_bam)

Create a `BamViews` object for the range 29805000 - 29820000 on
chromosome 20
bam_views <- BamViews(chr20_bam, bamRanges=GRanges("chr20",
IRanges(start=29805000, end=29820000)))

Load only the reads in that view
reads_sub <- readGAlignments(bam_views)

Inspect the `reads_sub` object
str(reads_sub)

Load peak calls from chr20_peaks
peaks <- import.bed(chr20_peaks)

Create a BamViews object
bam_views <- BamViews(chr20_bam, bamRanges=peaks)

Load the reads
reads <- readGAlignments(bam_views)

Visualising individual peaks in their genomic context using Gviz package
organizes data in tracks
each aligned to the same genomic coordinates
this makes it easy to combine data from different sources into a single plot
example Gviz plot

–
–

ideogram > tells us what chromosome we are looking at and roughly where our
data is located on that chromosome
data track (or coverage track) > read coverage is computed as the number of
reads overlapping a given position in the genome
example - a coverage of 5 means that 5 reads (potentially starting at different
positions) include this location in their alignment
annotation (peaks/gene regions) track > highlight the location of certain features
relative to the read coverage

above shows one track showing peak calls
and one visualizing transcript annotations for genes located in this part of the
genome

genome axis track > provides more detailed information about the location on the
chromosome

Setting-up coordinates
library(Gviz)
library(TxDb.Hsapiens.UCSC.hg19.knownGene) #this package allows us to display
existing genomic annotations such as gene location
ideogram <- IdeogramTrack(“chr12”, “hg19”) #shows location on the chromosome
cover_track <- DataTrack(cover_ranges, window-100000, type=‘h,̓
name=“Coverage”)
#cover_ranges needs to be a GRanges object
#ʼwindowʼ helps us adjust the display (makes it high resolution)
#type ‘hʼ creates histogram display
peak_track <- AnnotationTrack(peaks, name=“Peaks”)
#this allows us to display the peak calls
tx <= GeneRegionTrack(TxDb.Hsapiens.UCSC.hg19.knownGene,
chromosome=‘chr12,̓ start=101360000, end=101380000, name=“Genes”)
axis <- GenomeAxisTrack() #shows the coordinates of the plotted region

plotTracks(list(ideogram, cover_track, peak_track, tx, axis), from=101360000,
to=101380000)

Example
Create annotation track
peak_track <- AnnotationTrack(peak_calls, name="Peaks")

Create data track
cover_track <- DataTrack(cover_ranges, window=10500, type="polygon",
name="Coverage",
 fill.mountain=c("lighgrey", "lightgrey"), col.mountain="grey")

Produce plot
plotTracks(list(ideogram, cover_track, peak_track, GenomeAxisTrack()),
chromosome="chr20", from=start_pos, to=end_pos)

output>

Cleaning ChIP-seq data
need to remove artifacts within your data to reduce noise

Common problems
incorrect mapped reads may produce false peaks
genomic repeats - sequences that occur over and over again
*problematic if the repeats in the sample and the reference do not match up

low complexity regions like the ends of the arms of a chromosome (quality in
reference sequences tends to be low in these regions)
*because there is a lot of sequence similarity over extended regions, the origin of
reads is difficult to determine
*many regions that tend to accumulate incorrectly mapped reads are known
this is nice because now we can exclude them
example

the red line at the start of the arm of the chromosome that we are looking at marks
the region we are looking at
*we have multiple large peaks > we have to be wary > likely chance these are
artifacts rather than actual protein binding sites

Amplification bias
arises because of the way DNA extracted from cells is processed prior to
sequencing
DNA fragments extracted from cells are copied multiple times prior to sequencing
needed in order to obtain enough DNA for sequencing
however some fragments will produce more copies than others
this means some fragments will produce multiple reads
which can pile up to give the qppearance of a peak in coverage

Quality Control Reports
usefult to obtain summaries of all these potential problems in a systematic way
across all samples in a study

–
–

ChiPQC is an R package that produces an HTML report in your working directory
with standard quality metrics for all samples in your study presented as a series of
tables and plots
maps the BAM and BED files to a .csv file with sampleID and other desired
columns (ie. condition, tissue, treatment, …)
example
library(ChIPQC)
qc_report <- ChIPQC(experiment=“sample_info.csv”, annotatin=“hg19”)
ChIPQCreport(qc_report)

How to clean the data
standard practice to group all reads that share the same mapping coordinates and
retain only one read alignment per group
this guards against amplification bias
reads that map to more than one location in the genome > may imply incorrect
alignment > remove prior to peak calling
reads with low mapping quality > the same, may imply incorrect alignment >
remove prior to peak calling
lastly remove peaks in blacklisted regions

some peak callers have the ability to do this for you
can also find a list of these regions created by the ENCODE project

a side > ENCODE aims to create a catologue of functional elements in the human
genome

Example
Find all overlaps between peaks and blacklisted regions
blacklisted <- findOverlaps(peaks, blacklist.hg19, type="within")

Create a plot to display read coverage together with peak calls and blacklisted
regions in the selected region
cover_track <- DataTrack(cover, window=10500, type="polygon",
name="Coverage",
 fill.mountain=c("lighgrey", "lightgrey"), col.mountain="grey")

Calculate peak_track and region_track, plot plotTracks
peak_track <- AnnotationTrack(peaks, name="Peaks", fill="orange")
region_track <- GeneRegionTrack(region, name="Blacklist")
plotTracks(list(ideogram, cover_track, peak_track, region_track,
GenomeAxisTrack()),
 chromosome="chr21", from=start(region)-1000, to=end(region)+1000)

Remove all blacklisted peaks
clean_peaks <- peaks[-from(blacklisted)]

output>

Load reads with mapping qualities by requesting the "mapq" entries
reads <- readGAlignments(bam_file, param=ScanBamParam(what="mapq"))

Identify good quality alignments
high_mapq <- mcols(reads)$mapq >= 20

boxplot(mcols(reads)$mapq ~ high_mapq, xlab="good quality alignments",
ylab="mapping quality")

Remove low quality alignments
reads_good <- subset(reads, high_mapq)

output>

Assessing enrichment
need to extend reads
remember sequencing is generated by DNA fragments that the protein of interest
is bound to
*this results in several reads from both ends of the fragment mapping to similar
locations in the genome
clustering either sided of the protein binding site
*signal becomes a lot clearer once reads are extended to the length of the full
fragment
reads from both ends will now overlap and form a more pronounced peak
visual example - prior to aggregation

green dot representing new more pronounced peak

further example
top two coverage tracks read coverage for the forward and reverse strand
respectively
the third represents total coverage after reads have been extended to the mean
fragment length

Extending reads

resize() is from the GenomicRanges package
allows you to specify the desired width of a fragment via the ʼwidthʼ argument

Next enrichment
how does coverage in peaks compare to coverage in other parts of the genome?
need to partition the genome into short intervals
example into 200 base pair long intervals
then assign each bin either to a peak, a blacklisted region, or background

with R:

countOverlaps() counts the number of fragments in each of the selected bins

*wrapping the above code for convenience
count_bins <- function(reads, target, bins){

overlap <- from(findOverlaps(bins, targe))
target_bins <- bins[overlap,]
target_bins$score <- contOverlaps(target_bins, reads)
target_bins

}

Coverage for the blacklisted regions
peak_bins <- count_bins(reads_ext, peaks, bins)
bl_bins <- count_bins(reads_ext, blacklist.hg19, bins)

Background coverage
measure background coverage is to consider the coverage for all remaining bins
after peaks and blacklists are removed
we can do this by subsetting
#remove all bins already accounted for
bkg_bins <- subset(bins, !bins %in% peak_bins & !bins %in% bl_bins)
#count number of reads overlapping with each remaining bin
bkg_bins$score <- countOverlaps(bkg_bins, reads_ext)

Example
Extend reads to the average fragment length of 183 bp
reads_ext <- resize(reads_gr, width=183)

Compute coverage
cover <- coverage(reads_ext)

Prepare read counts for plotting by organising them in data frames
peak_scores <- data.frame(source="peaks", fragments=peak_bins$score)
bl_scores <- data.frame(source="blacklist", fragments=bl_bins$score)
bkg_scores <- data.frame(source="background", fragments=bkg_bins$score)
scores <- rbind(peak_scores, bl_scores, bkg_scores)

Create a boxplot of the read counts by bin type
ggplot(scores, aes(y=fragments, x=source)) + geom_boxplot()

output>

Intro to differential binding
our example > examiing primary vs treatment resistant prostate tumors
goal is to identify molecular mechanisms that cause this difference in response
are samples from the same group generally similar?
are samples from different groups different?
what are the differences?

PCA is one method we can use to answer these questions
PCA is a method used to uncover some of the underlying structure within a
dataset
PCA identifies the directions (or principle components) with the most variation
between data points
using the first two principle components we can define a plane that passes
through the cloud of data points
goal is to minimize the overall distance between points and the plane as much as
possible
visualizing:

by rotating the data we can get a view that highlights the main differences
between data points
we project this view onto a 2D scatter plot (PCA plot)

we can create this with the ChIPQC package
qc_result <- ChIPQC(“sample.csv”, “hg19”)
*need to create a consistent set of peaks across all samples for this to work
#from the DiffBind package we use dba.count() which will provide us with a
suitable set of concensus peaks
#ʼsummitsʼ argument determines the width of the resulting peaks
counts <- dba.count(qc_results, summits=250)
plotPrincomp(counts)

Another option - hierarchical clustering
clustering is based on the observed read counts for each peak
uses the pairwise distances between samples to build a tree
compute this way:
distance <- dist(t(coverage))
#computes the distance between the rows of a matrix
#t is for transpose and this will give you the distance between samples
#hclust will create a dendrogram
dendro <- hclust(distance)
#plot dendrogram
plot(dendro)

Employ this clustering with a heatmap
DiffBind package allows us to facilitate this
dba.plotHeatmap(peaks, maxSites = peak_count, correlations = FALSE)
#arguments ensure all peaks are plotted instead of correlations between samples

Example
Compute the pairwise distances between samples using `dist`
cover_dist <- dist(t(cover))

Use `hclust()` to create a dendrogram from the distance matrix
cover_dendro <- hclust(cover_dist)

Plot the dendrogram
plot(cover_dendro)

output>

Print the `peaks` object
print(peaks)

Obtain the coordinates of the merged peaks
merged_peaks <- peaks$merged

Extract the number of peaks present in the data
peak_count <- nrow(merged_peaks)

Create a heatmap using the `dba.plotHeatmap()` function
dba.plotHeatmap(peaks, maxSites = peak_count, correlations = FALSE)

ouput>

Testing for differential binding
do statistical analysis with DiffBind package
which interfaces to use other tools such as DESeq2 or edgeR

Start with creating a consistent shared peak set
and then counting reads in peak set
can use ChIPQC output as input to the analysis
with R:
peak_counts <- dba.count(qc_output, summits=250)
#summits argument signals that peaks should be re-centered around the
consensus peak
#250 represents the width of the resulting peak on either side
#this will give us 500 base pair wide peaks

to run the analysis we need to tell DiffBind how the samples should be split into
groups
peak_counts <- dba.contrast(peak_counts, categories = DBA_CONDITION)
addition supported categories:

*Background coverage can easily be mistaken for peaks
*control samples can be used to assess background coverage in the absence of
ChIP signal to filter out this noise

Running the analysis
bind_diff <- dba.analyze(peak_counts)

Looking at the results
dba.plotPCA(bind_diff, DBA_Condition, contrast=1)
dba.plotHeatmap(bind_diff, DBA_Condition, contrast=1)
these will give you some sense of the extent to which the two groups differ in their
binding patterns

Example
Examine the ar_binding object
print(ar_binding)

Identify the category corresponding to the tumor type contrast
contrast <- DBA_CONDITION

Establish the contrast to compare the two tumor types
dba_peaks <- dba.contrast(ar_binding, categories=contrast, minMembers=2)

Examine the dba_peaks object to confirm that the contrast has been added
print(dba_peaks)

Examine the `ar_binding` object to confirm that it contains the required contrast
print(ar_binding)

Run the differential binding analysis
ar_diff <- dba.analyze(ar_binding)

Examine the result
print(ar_diff)

Create a PCA plot using all peaks
dba.plotPCA(ar_diff, DBA_CONDITION)

output>

Create a PCA plot using only differentially bound peaks
dba.plotPCA(ar_diff, DBA_CONDITION, contrast = 1)

output>

Create a PCA plot using only differentially bound peaks
dba.plotPCA(ar_diff, DBA_CONDITION, contrast = 1)

output>

Create a heatmap using only differentially bound peaks
dba.plotHeatmap(ar_diff, DBA_CONDITION, contrast=1, correlations = FALSE)

output>

Further visualizing the results
first weʼll look at MA plots
visualises the relationship between change in peak intensity between conditions
and average peak intensity
can do this with the DiffBind package as well
example
dba.plotMA(dba_object)
output>

|.
}.
~.
�.
�.

�.
�.

shows the log peak intensity on the x-axis
log fold change on the y-axis
above - most data points have been smoothed into a density cloud (this is done to
make it easier to see concentration)
points corresponding to differentially bound peaks are highlighted in pink
always make sure that proper normalization has been performed

recap on differential binding
refers to the identification and comparison of differenecs in the binding patterns
of a protein (often a transcription factor) between two or more conditions or
experimental groups
recap on the process again

ChIP-seq experiemnt
sequencing
read alignment to a reference genome
peak calling - regions of the genome with a high density of aligned reads
differential binding analysis - identify genomic regions where the binding of
the protein significantly differs between conditions
statistical testing - assess significance of peaks vs random chance
visualization

Additional plots
dba.plotVolcano(dba_object)
output>

FDR stands for false discovery rate
volcano plot plots negative log p-values (or false discovery rates) as a function of
log fold change
peaks with significant evidence for differential binding are highlighted in pink
volcanos are useful because they display the significance of the change in peak
intensity together with the magnitude of the change

dba.plotBox(dba_object)
output>

Interpreting peaks
we are really interested in gene regulation
we are attempting to identify genes that are regulated by the binding of certain
transcription factors
commonly we assign the peak to the closest gene
to visualize:

to do this we need to obtain info about gene locations
then we can assign peaks to the closest genes
then we can create lists of genes with changes in protein binding between the two
groups

Transcript annotations
ʼTxDbʼ packages provide info about the location of all known transcripts and genes
in a given genome
remember Entrez IDs > unique gene identifiers

Annotating peaks
annotates peaks with their closest gene
example
library(ChIPpeakAnno)
annoPeaks(peaks, human_genes, bindingType=‘startSite ,̓
bindingRegion=c(-5000,5000))
#this requires two GRanges objects (peaks and human_genes for this example)
#one has peak coordinates
#the other has annotations
#bindingType gives instructions for how to match these two GRange objects
#bindingRegion for this example requires peaks to be within 5 kilo bases of the
transcription start site

Visualize similarites and differences
can start with a Venn
dba.plotVenn(peaks, mask=1�2)

for larger samples UpSet plots are better

Example
Extract peaks from ChIPQCexperiment object
peak_calls <- peaks(ar_calls)

Only keep samples that passed QC
peak_passed <- peak_calls[qc_pass]

Find overlaps between peak sets
peaks_combined <- findOverlapsOfPeaks(peak_passed[[1]], peak_passed[[2]],
peak_passed[[3]], peak_passed[[4]], maxgap=50)

Examine merged peak set
print(peaks_combined)

Obtain gene symbols
gene_symbol <- select(org.Hs.eg.db, keys=human_genes$gene_id,
columns="SYMBOL", keytype="ENTREZID")

Examine the structure of the returned annotations
str(gene_symbol)

Add gene symbols to gene coordinates
human_genes$symbol <- gene_symbol$SYMBOL

Examine output
print(human_genes)

Annotate peaks with closest gene
peak_anno <- annoPeaks(peaks_merged, human_genes, bindingType="startSite",
bindingRegion=c(-5000,5000))

How many peaks were found close to genes?
length(peak_anno)

Where are peaks located relative to genes?
table(peak_anno$insideFeature)

Create Venn diagram
dba.plotVenn(ar_diff, mask=1�4)

output>

Convert the matrix of called peaks into a data frame
called_peaks <- as.data.frame(ar_diff$called)

Create UpSet plot
upset(called_peaks, keep.order = TRUE, sets=colnames(ar_diff$called),
order.by="freq")

ouput>

Interpreting affected gene lists
what are these genes doing?
gene set enrichment approach
this involves defining groups of genes that are related by their function in some
way
visualize:

large proportion of peak associated genes like set 2 are likely to be of relevance
finding enriched gene sets
library(chipenrich)
chipenrich(peaks, genome=ʼhg19,̓ genesets=‘hallmark ,̓ locusdef=‘nearest_tssʼ)
this package allows you to provide peak locations directly without having to
annotate first
‘genomeʼ argument indicates reference genome
‘genesetsʼ selects one of several supported genesets
‘locusdefʼ determines how peaks hould be associated with genes #here we use
closest transcription start site

Example
Plot distribution of distances between peaks and transcription start sites
plot_dist_to_tss(peaks, genome = "hg19")

Plot relationship between gene length and presence of peaks
plot_chipenrich_spline(peaks, genome = "hg19", mappability=50)

output>

Break down of each plot:

1. **Plot distribution of distances between peaks and transcription start sites:**
 - This plot visualizes the distribution of distances between ChIP-seq peaks
(likely regions of interest in the genome, such as regions where a protein binds)
and transcription start sites (TSS) of genes. The x-axis represents the distances

between the peaks and TSS, while the y-axis shows the frequency of occurrences
for each distance range. This plot provides insights into the genomic locations of
the identified peaks relative to gene transcription start sites.

2. **Plot relationship between gene length and presence of peaks:**
 - This plot explores the relationship between the length of genes and the
presence of ChIP-seq peaks. It likely uses a spline curve to depict the trend. The
x-axis represents gene lengths, and the y-axis shows the presence or absence of
ChIP-seq peaks. The curve's shape indicates whether there's a correlation
between gene length and the likelihood of having peaks. This type of analysis
helps identify potential associations between gene characteristics (like length) and
the binding patterns observed in ChIP-seq experiments.

Example contʼd
Select all peaks with higher intensity in treatment resistant samples
turp_peaks <- peaks_binding[, "GSM1598218"] + peaks_binding[, "GSM1598219"]
< peaks_binding[, "GSM1598223"] + peaks_binding[, "GSM1598225"]

Run enrichment analysis
enrich_turp <- chipenrich(peaks_comb[turp_peaks,], genome="hg19",
 genesets = "hallmark", out_name = NULL,
 locusdef = "nearest_tss", qc_plots=FALSE)

Print the results of the analysis
print(enrich_turp$results)

output>

 Geneset.Type Geneset.ID Description
1 Hallmark (MSigDB) M5957 HALLMARK_PANCREAS_BETA_CELLS
2 Hallmark (MSigDB) M5916 HALLMARK_APICAL_SURFACE
3 Hallmark (MSigDB) M5950 HALLMARK_ALLOGRAFT_REJECTION
4 Hallmark (MSigDB) M5921 HALLMARK_COMPLEMENT
5 Hallmark (MSigDB) M5915 HALLMARK_APICAL_JUNCTION
6 Hallmark (MSigDB) M5908 HALLMARK_ANDROGEN_RESPONSE
7 Hallmark (MSigDB) M5946 HALLMARK_COAGULATION
8 Hallmark (MSigDB) M5944 HALLMARK_ANGIOGENESIS
9 Hallmark (MSigDB) M5902 HALLMARK_APOPTOSIS
10 Hallmark (MSigDB) M5934 HALLMARK_XENOBIOTIC_METABOLISM
11 Hallmark (MSigDB) M5892
HALLMARK_CHOLESTEROL_HOMEOSTASIS
12 Hallmark (MSigDB) M5924 HALLMARK_MTORC1_SIGNALING
13 Hallmark (MSigDB) M5913

HALLMARK_INTERFERON_GAMMA_RESPONSE
14 Hallmark (MSigDB) M5907 HALLMARK_ESTROGEN_RESPONSE_LATE
15 Hallmark (MSigDB) M5911
HALLMARK_INTERFERON_ALPHA_RESPONSE
16 Hallmark (MSigDB) M5901 HALLMARK_G2M_CHECKPOINT
17 Hallmark (MSigDB) M5937 HALLMARK_GLYCOLYSIS
18 Hallmark (MSigDB) M5906 HALLMARK_ESTROGEN_RESPONSE_EARLY
19 Hallmark (MSigDB) M5891 HALLMARK_HYPOXIA
20 Hallmark (MSigDB) M5923 HALLMARK_PI3K_AKT_MTOR_SIGNALING
21 Hallmark (MSigDB) M5926 HALLMARK_MYC_TARGETS_V1
22 Hallmark (MSigDB) M5935 HALLMARK_FATTY_ACID_METABOLISM
23 Hallmark (MSigDB) M5941 HALLMARK_UV_RESPONSE_UP
24 Hallmark (MSigDB) M5925 HALLMARK_E2F_TARGETS
25 Hallmark (MSigDB) M5939 HALLMARK_P53_PATHWAY
26 Hallmark (MSigDB) M5930
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION
27 Hallmark (MSigDB) M5953 HALLMARK_KRAS_SIGNALING_UP
28 Hallmark (MSigDB) M5893 HALLMARK_MITOTIC_SPINDLE
29 Hallmark (MSigDB) M5956 HALLMARK_KRAS_SIGNALING_DN
30 Hallmark (MSigDB) M5890 HALLMARK_TNFA_SIGNALING_VIA_NFKB
31 Hallmark (MSigDB) M5947 HALLMARK_IL2_STAT5_SIGNALING
32 Hallmark (MSigDB) M5932 HALLMARK_INFLAMMATORY_RESPONSE
33 Hallmark (MSigDB) M5909 HALLMARK_MYOGENESIS
34 Hallmark (MSigDB) M5942 HALLMARK_UV_RESPONSE_DN
35 Hallmark (MSigDB) M5951 HALLMARK_SPERMATOGENESIS
36 Hallmark (MSigDB) M5898 HALLMARK_DNA_REPAIR
37 Hallmark (MSigDB) M5896 HALLMARK_TGF_BETA_SIGNALING
38 Hallmark (MSigDB) M5948 HALLMARK_BILE_ACID_METABOLISM
39 Hallmark (MSigDB) M5938
HALLMARK_REACTIVE_OXIGEN_SPECIES_PATHWAY
40 Hallmark (MSigDB) M5922
HALLMARK_UNFOLDED_PROTEIN_RESPONSE
41 Hallmark (MSigDB) M5895
HALLMARK_WNT_BETA_CATENIN_SIGNALING
42 Hallmark (MSigDB) M5949 HALLMARK_PEROXISOME
43 Hallmark (MSigDB) M5910 HALLMARK_PROTEIN_SECRETION
44 Hallmark (MSigDB) M5905 HALLMARK_ADIPOGENESIS
45 Hallmark (MSigDB) M5919 HALLMARK_HEDGEHOG_SIGNALING
46 Hallmark (MSigDB) M5936
HALLMARK_OXIDATIVE_PHOSPHORYLATION
47 Hallmark (MSigDB) M5897 HALLMARK_IL6_JAK_STAT3_SIGNALING
48 Hallmark (MSigDB) M5903 HALLMARK_NOTCH_SIGNALING
49 Hallmark (MSigDB) M5945 HALLMARK_HEME_METABOLISM

50 Hallmark (MSigDB) M5928 HALLMARK_MYC_TARGETS_V2
 P.value FDR Effect Odds.Ratio Status N.Geneset.Genes
1 0.007210798 0.3366696 2.0650386 7.885602e+00 enriched 39
2 0.013466783 0.3366696 1.9070347 6.733094e+00 enriched 44
3 0.055226772 0.9204462 1.2000853 3.320400e+00 enriched 200
4 0.099016124 0.9433876 1.0309644 2.803768e+00 enriched 200
5 0.123477705 0.9433876 0.9641464 2.622548e+00 enriched 200
6 0.131277605 0.9433876 1.1296276 3.094504e+00 enriched 101
7 0.132074264 0.9433876 1.1301876 3.096237e+00 enriched 138
8 0.153006954 0.9562935 1.4901855 4.437919e+00 enriched 36
9 0.261645178 0.9832372 0.8382321 2.312275e+00 enriched 161
10 0.270128932 0.9832372 0.8252106 2.282361e+00 enriched 200
11 0.307096452 0.9832372 1.0572811 2.878534e+00 enriched 74
12 0.308608297 0.9832372 0.7603828 2.139095e+00 enriched 200
13 0.333942626 0.9832372 0.7215693 2.057660e+00 enriched 199
14 0.369629032 0.9832372 0.6680817 1.950492e+00 enriched 200
15 0.370567850 0.9832372 0.9268041 2.526422e+00 enriched 97
16 0.414857491 0.9832372 0.6078045 1.836395e+00 enriched 200
17 0.424828541 0.9832372 0.5940336 1.811280e+00 enriched 200
18 0.519424905 0.9832372 0.4789070 1.614309e+00 enriched 200
19 0.565013411 0.9832372 0.4292091 1.536042e+00 enriched 199
20 0.636750814 0.9832372 0.4865777 1.626740e+00 enriched 105
21 0.762665708 0.9832372 0.3113319 1.365242e+00 enriched 198
22 0.766003568 0.9832372 0.3061772 1.358223e+00 enriched 158
23 0.801835270 0.9832372 0.2585896 1.295102e+00 enriched 158
24 0.848185660 0.9832372 0.1971499 1.217927e+00 enriched 200
25 0.941704828 0.9832372 0.0751372 1.078032e+00 enriched 200
26 0.596772045 0.9832372 -0.5446876 5.800230e-01 depleted 199
27 0.632976060 0.9832372 -0.4913727 6.117860e-01 depleted 200
28 0.761266682 0.9832372 -0.3114038 7.324181e-01 depleted 200
29 0.787106058 0.9832372 -0.2781636 7.571730e-01 depleted 199
30 0.791398025 0.9832372 -0.2711955 7.624674e-01 depleted 200
31 0.811615352 0.9832372 -0.2443141 7.832416e-01 depleted 200
32 0.822419900 0.9832372 -0.2304902 7.941442e-01 depleted 200
33 0.842358130 0.9832372 -0.2043783 8.151539e-01 depleted 200
34 0.972238830 0.9832372 -13.4793606 1.399549e-06 depleted 144
35 0.973404957 0.9832372 -12.7673218 2.852480e-06 depleted 135
36 0.973687327 0.9832372 -12.1263283 5.415051e-06 depleted 149
37 0.975154999 0.9832372 -11.9548439 6.428021e-06 depleted 54
38 0.975942720 0.9832372 -12.5187551 3.657411e-06 depleted 111
39 0.976698181 0.9832372 -11.5268656 9.861566e-06 depleted 49
40 0.976752526 0.9832372 -12.3566713 4.300964e-06 depleted 112
41 0.977378938 0.9832372 -11.9380109 6.537139e-06 depleted 42

42 0.977618249 0.9832372 -12.5373207 3.590135e-06 depleted 104
43 0.978424277 0.9832372 -12.8760081 2.558708e-06 depleted 96
44 0.978983596 0.9832372 -13.5316571 1.328238e-06 depleted 200
45 0.979401399 0.9832372 -12.4368600 3.969541e-06 depleted 36
46 0.979612012 0.9832372 -13.1903447 1.868556e-06 depleted 197
47 0.979696172 0.9832372 -12.5388526 3.584640e-06 depleted 87
48 0.980112685 0.9832372 -11.8219938 7.341306e-06 depleted 32
49 0.980135570 0.9832372 -13.6090416 1.229330e-06 depleted 199
50 0.983237225 0.9832372 -11.9429655 6.504830e-06 depleted 58
 N.Geneset.Peak.Genes Geneset.Avg.Gene.Length Geneset.Peak.Genes
1 2 187356.28 5126, 6726
2 2 209852.25 351, 1946
3 3 113673.32 5788, 7042, 10225
4 3 141499.61 716, 2153, 4324
5 3 157525.62 3675, 5788, 25945
6 2 161568.85 9510, 84159
7 2 116728.85 716, 4324
8 1 155037.22 351
9 2 134149.50 351, 7042
10 2 102425.97 4128, 7042
11 1 107865.30 6282
12 2 110946.77 5033, 10097
13 2 121400.47 716, 84159
14 2 118319.26 374, 799
15 1 89686.42 716
16 2 135063.36 1946, 7514
17 2 133232.24 2584, 5033
18 2 149021.69 374, 799
19 2 169486.20 2584, 5033
20 1 142428.66 10097
21 1 77524.61 7514
22 1 102593.39 4128
23 1 117646.30 4128
24 1 86673.06 7514
25 1 100589.85 351
26 1 219793.90 374
27 1 206398.79 22903
28 1 155311.85 613
29 1 171727.17 7042
30 1 151486.12 374
31 1 143893.89 5033
32 1 152045.26 5099
33 1 151066.60 351

34 0 296799.65
35 0 151024.85
36 0 63996.66
37 0 162524.91
38 0 115350.19
39 0 101098.65
40 0 83518.00
41 0 178339.31
42 0 102425.82
43 0 146945.33
44 0 112868.34
45 0 281805.72
46 0 71107.53
47 0 100468.59
48 0 161979.34
49 0 100340.71
50 0 61808.02

Examine the top gene sets
head(enrich_primary$results)

Extract the gene IDs for the top ranking set
genes <- enrich_primary$results$Geneset.Peak.Genes[1]

Split gene IDs into a vector
gene_ids <- strsplit(genes, ', ')[[1]]

Convert gene IDs to gene symbols
gene_symbol <- select(org.Hs.eg.db, keys=gene_ids, columns="SYMBOL",
keytype="ENTREZID")

Print the result
print(gene_symbol)

output>
head(enrich_primary$results)
 Geneset.Type Geneset.ID Description
1 KEGG Pathways hsa04110 Cell cycle
2 KEGG Pathways hsa00533 Glycosaminoglycan biosynthesis - keratan sulfate
3 KEGG Pathways hsa04115 p53 signaling pathway
4 KEGG Pathways hsa00052 Galactose metabolism
5 KEGG Pathways hsa00480 Glutathione metabolism

6 KEGG Pathways hsa04977 Vitamin digestion and absorption
 P.value FDR Effect Odds.Ratio Status N.Geneset.Genes
1 0.001626919 0.3335183 2.009188 7.457261 enriched 123
2 0.009044566 0.6339066 2.837527 17.073498 enriched 15
3 0.009276682 0.6339066 1.978029 7.228479 enriched 68
4 0.014550627 0.6935708 2.609276 13.589215 enriched 27
5 0.019359318 0.6935708 2.499356 12.174651 enriched 50
6 0.020299634 0.6935708 2.468228 11.801512 enriched 24
 N.Geneset.Peak.Genes Geneset.Avg.Gene.Length Geneset.Peak.Genes
1 3 88319.47 4616, 8555, 10912
2 1 149392.57 2683
3 2 114026.68 4616, 10912
4 1 67549.17 2683
5 1 45632.53 4257
6 1 96953.92 4363

Extract the gene IDs for the top ranking set
genes <- enrich_primary$results$Geneset.Peak.Genes[1]

Split gene IDs into a vector
gene_ids <- strsplit(genes, ', ')[[1]]

Convert gene IDs to gene symbols
gene_symbol <- select(org.Hs.eg.db, keys=gene_ids, columns="SYMBOL",
keytype="ENTREZID")
'select()' returned 1�1 mapping between keys and columns

Print the result
print(gene_symbol)
 ENTREZID SYMBOL
1 4616 GADD45B
2 8555 CDC14B
3 10912 GADD45G

General format of KEGG URLs:
https://www.kegg.jp/pathway/pathway/<pathway_id>+<gene_id>+...+<gene_id>

This is the base URL for all KEGG pathways
base_url <- "https://www.kegg.jp/pathway/"

Add pathway ID to URL
path_url <- paste0(base_url, top_path)

Collapse gene IDs into selection string
gene_select <- paste(genes, collapse="+")

Add gene IDs to URL
path_url <- paste(path_url, gene_select, sep="+")

ouput>
https://www.kegg.jp/pathway/hsa04110+4616+8555+10912

