
Dates and Times in Python
by datacamp

Python has a ‘dateʼ class
from datetime import date
two_hurricanes_dates = [date(2016, 10, 7), date(2017, 6, 21)]
#from biggest to smallest, year to month to day

how to print attributes
print(two_hurricanes_dates[0].year)
print(two_hurricanes_dates[0].month)
print(two_hurricanes_dates[0].day)

weekday() method
print(two_hurricanes_dates[0].weekday()
0 = Monday
1 = Tuesday
2 = Wednesday
3 = Thursday
4 = Friday
5 = Saturday
6 = Sunday

Math with dates
create two date objects
d1 = date (2017, 11, 5)
d2 = (2017, 12, 4)
create a list of the two date objects
l = [d1, d2]
example using python
print(min(l))
output 2017-11-05 (used the minimum function to print out the earliest date)

We can also subtract dates
**this gives us an object of type ‘timedeltaʼ
delta = d2 - d1
print(delta.days)
output > 29

*you can also use timedelta from the other direction
from datetime import timedelta

td = timedelta(days=29)
print(d1 + td)
output > 2017-12-04

Side bar
Incrementing variables with +=
x=0 x=0
x=x+1 x+=1
print(x) print(x)
output > 1 output > 1
**same effect, used all the time for counting

We may want to turn dates into strings
key time is when want to put dates into filenames or write dates out to CSV or
Excel files

ISO 8601 format: YYYY-MM-DD
print([d.isoformat()])
output > [‘2017-11-05ʼ] gives us the date as a string

ISO 8601 format has other advantages
deals well with difficult dates like 2000-01-01 and 1999-12-31
*it sorts these dates appropriately but year has to be entered first

Another format strftime()
works by letting you pass a ‘format stringʼ
d = date(2017, 1, 5)
print(d.strftime(‘%Yʼ))
output > 2017
**advantage is that strftime is very flexible
can format string with more text in it
print(d.strftime(‘Year is %Y))
output > Year is 2017
another example
print(d.strftime(‘%Y/%m/%d))
output > 2017/01/05

Dealing with dates and times
from datetime import datetime
dt = datetime(2017, 10, 1, 15, 23, 25) #this is Oct 1, 2017 at 3d23d25p
you can add microseconds
in this example dt = datetime(2017, 10, 1, 15, 23, 25, 500000) # we added 500,000
microseconds

Replacing parts of a datetime
print(dt)
output 2017-10-01 15d23d25.500000
dt_hr = dt.replace(minute=0, second=0, microsecond=0)
print(dt_hr)
output 2017-10-01 15d00d00

Printing and parsing datetimes
dt = datetime(2017, 12, 30, 15, 19, 13)
print(dt.strftime(“%Y-%m-%d))
this creates a string
#add in hours, minutes, seconds
print(dt.strftime(“%Y-%m-%d %H:%M:%S”))
**have flexibility in how this string is formatted
random example
dt.strftime(“%H:%M:%S on %Y/%m/%d”))

**official standard-compliant way to write time in computer speak
in dt.isoformat())
example output
2017-12-30T15d19d13

Parsing
parse with dt.strptime #ie string parse time
same package
from datetime import datetime
first argument is the string to turn into a datetime
second argument is the format string that says how to do it
example
dt = datetime.strptime(“12/30/2017 15d19d13”, “%m/%d/%Y %H:%M:%S”)
print(type(dt))
output > class datetime
**need an exact match to do a string conversion

Another kind of datetime to be aware of is the Unix timestamp
many computers store datetime information this way
it is the number of seconds since January 1, 1970
considered the birth of the modern-style computer
example
ts = 1514665153.0
#convert to datetime
print(datetime.fromtimestamp(ts))

output > is the time

good example
Write down the format string
fmt = "%Y-%m-%d %H:%M:%S"

Initialize a list for holding the pairs of datetime objects
onebike_datetimes = []

Loop over all trips
for (start, end) in onebike_datetime_strings:
 trip = {'start': datetime.strptime(start, fmt),
 'end': datetime.strptime(end, fmt)}

 # Append the trip
 onebike_datetimes.append(trip)

Working with durations
#create variables for needed datetimes
start = datetime(2017, 10, 8, 23, 46, 47)
end = datetime(2017, 10, 9, 0, 10, 57)
#subtract datetimes to create a timedelta
duration = end - start
**a timedelta represents what is called a duration, ie the elapsed time between
events
we call method total_seconds() to get the total number of seconds of our time
delta
print(duration.total_seconds())

Create a timedelta from start
from datetime import timedelta
delta1 = timedelta(seconds=1)
this makes a timedelta which corresponds to a one second duration
print(start)
#to get one second later
print(start + delta1)
#create another timedelta that is one day and one second
delta2 = timedelta(days=1, seconds=1)
print(start + delta2)
output gives us the next day and one second ahead

Can also create negative time deltas
delta3 = timedelta(weeks=-1)

print(start)
output gives one week prior

Initialize a list for all the trip durations
onebike_durations = []

for trip in onebike_datetimes:
 # Create a timedelta object corresponding to the length of the trip
 trip_duration = trip['end'] - trip['start']

 # Get the total elapsed seconds in trip_duration
 trip_length_seconds = trip_duration.total_seconds()

 # Append the results to our list
 onebike_durations.append(trip_length_seconds)

What was the total duration of all trips?
total_elapsed_time = sum(onebike_durations)

What was the total number of trips?
number_of_trips = len(onebike_durations)

Divide the total duration by the number of trips
print(total_elapsed_time / number_of_trips)

UTC offset
UTC stands for Coordinated Universal Time
the previous datetime objects that we have been working with are called “naive”
meaning they canʼt be compared across different parts of the world
they are not connected to their time zone
**UTC is used when you really need to know exactly when something happened
originated in UK so time zones move west or east of that focal point
west gives you UTC - x
east gives you UTC + x

example
from datetime import datetime, timedelta, timezone
#our example data is from Wash DC so we are going to use ET time zone
ET = timezone(timedelta(hours=-5))
dt = datetime(2017, 12, 30, 15, 9, 3, tzinfo=ET)
print(dt)
output > 2017-12-30 15d09d03-5d00 #-5d00 will give you UTC

You can make a datetime “awareʼ of its timezone
say we want to know what the date and time would been if the clock had been set
to India Standard Time
IST = timezone(timedelta(hours=5, minutes=30))
**here we use 5.5 hours because IST is 10.5 hours ahead of Wash DC
#now we will convert to IST
print(dt.astimezone(IST))
we used the astimezone() method to ask Python to create a new datetime object
corresponding to the same moment, but adjusted to a different time zone

There is a difference between adjusting timezones and changing the tzinfo directly
example
print(dt)
output > 2017-12-30 15d09d03-05d00
print(dt.replace(tzinfo=timezone.utc))
output > 2017-12-30 15d09d03+00d00
this has created a convenient object with zero UTC offset
ie clock has stayed the same but the UTC offset has shifted
**if we call the astimezone() method
print(dt.astimezone(timezone.utc))
we change both the UTC offset and the clock itself

example
Import datetime, timedelta, timezone
from datetime import datetime, timedelta, timezone

Create a timezone for Australian Eastern Daylight Time, or UTC+11
aedt = timezone(timedelta(hours=11))

October 1, 2017 at 15d26d26, UTC+11
dt = datetime(2017, 10, 1, 15, 26, 26, tzinfo=aedt)

Print results
print(dt.isoformat())

Another example
Create a timezone object corresponding to UTC-4
edt = timezone(timedelta(hours=-4))

Loop over trips, updating the start and end datetimes to be in UTC-4
for trip in onebike_datetimes[:10]:
 # Update trip['start'] and trip['end']
 trip['start'] = trip['start'].replace(tzinfo=edt)

 trip['end'] = trip['end'].replace(tzinfo=edt)

Another example
Loop over the trips
for trip in onebike_datetimes[:10]:
 # Pull out the start
 dt = trip['start']
 # Move dt to be in UTC
 dt = dt.astimezone(timezone.utc)

 # Print the start time in UTC
 print('Original:', trip['start'], '| UTC:', dt.isoformat())

Time zone database
from datetime import datetime
from dateutil import tz
et = tz.gettz(‘America/New_Yorkʼ)
other examples:
‘America/Mexico_Cityʼ
‘Europe/Londonʼ
‘Africa/Accraʼ
This is dynamic and will adjust the UTC offset depending on the date and time
ie daylight savings time
example
#last ride
last = datetime(2017, 12, 30, 15, 9, 3, tzinfo=et)
print(last)
output > 2017-12-30 15d09d03-05d00
#first ride
first = datetime(2017, 10, 1, 15, 23, 25, tzinfo=et)
print(first)
output > 2017-10-01 15d23d25-04d00
**see the -4d00 and -5d00, changed automatically based off daylight savings in
November

example
Import tz
from dateutil import tz

Create a timezone object for Eastern Time
et = tz.gettz('America/New_York')

Loop over trips, updating the datetimes to be in Eastern Time

for trip in onebike_datetimes[:10]:
 # Update trip['start'] and trip['end']
 trip['start'] = trip['start'].replace(tzinfo=et)
 trip['end'] = trip['end'].replace(tzinfo=et)

Another example
Create the timezone object
ist = tz.gettz('Asia/Kolkata')

Pull out the start of the first trip
local = onebike_datetimes[0]['start']

What time was it in India?
notlocal = local.astimezone(ist)

Print them out and see the difference
print(local.isoformat())
print(notlocal.isoformat())

Start of Daylight Saving Time
from dateutil import tx
eastern = tz.gettz(‘America/New_Yorkʼ)
#in EST
spring_ahead_159am = datetime(2017, 3, 12, 1, 59, 59, tzinfo = eastern)
#in EDT
spring_ahead_3am = datetime(2017, 3, 12, 3, 0, 0, tzinfo = eastern)

example
Import datetime, timedelta, tz, timezone
from datetime import datetime, timedelta, timezone
from dateutil import tz

Start on March 12, 2017, midnight, then add 6 hours
start = datetime(2017, 3, 12, tzinfo = tz.gettz('America/New_York'))
end = start + timedelta(hours=6)
print(start.isoformat() + " to " + end.isoformat())

How many hours have elapsed?
print((end - start).total_seconds()/(60*60))

What if we move to UTC?
print((end.astimezone(timezone.utc) - start.astimezone(timezone.utc))\
 .total_seconds()/(60*60))

Example
Import datetime and tz
from datetime import datetime
from dateutil import tz

Create starting date
dt = datetime(2000, 3, 29, tzinfo = tz.gettz('Europe/London'))

Loop over the dates, replacing the year, and print the ISO timestamp
for y in range(2000, 2011):
 print(dt.replace(year=y).isoformat())

Ending Daylight Saving Time
eastern = tz.gettz(‘US/Easternʼ)
first_1am = datetime(2017, 11, 5, 1, 0, 0, tzinfo=eastern)
tz.datetime_ambiguous(first_1am)
output > True
this tells us that yes this is a time which could occur at two different UTC moments
in this timezone
#create a second datetime with the same date and time
second_1am = datetime(2017, 11, 5, 1, 0, 0, tzinfo=eastern)
second_1am = tz.enfold(second_1am)
this method takes the argument of the datetime we want to mark and says this
datetime belongs to the second time the wall clock struck 1am this day and not
the first

(first_1am - second_1am).total_seconds()
output > 0.0
**enfold doesnʼt change any of the behavior of a datetime
acts as a placeholder
up to further parts of the program to pay attention and do something with it

we need to convert to UTC which is unambiguous
first_1am = first_1am.astimezone(tz.UTC)
second_1am = second_1am.astimezone(tz.UTC)
(second_1am - first_1am).total_seconds()
output > 3600.0
tells us that these two outputs are exactly an hour apart

Example
Loop over trips
for trip in onebike_datetimes:

 # Rides with ambiguous start
 if tz.datetime_ambiguous(trip['start']):
 print("Ambiguous start at " + str(trip['start']))
 # Rides with ambiguous end
 if tz.datetime_ambiguous(trip['end']):
 print("Ambiguous end at " + str(trip['end']))

Example
trip_durations = []
for trip in onebike_datetimes:
 # When the start is later than the end, set the fold to be 1
 if trip['start'] > trip['end']:
 trip['end'] = tz.enfold(trip['end'])
 # Convert to UTC
 start = trip['start'].astimezone(timezone.utc)
 end = trip['end'].astimezone(timezone.utc)

 # Subtract the difference
 trip_length_seconds = (end-start).total_seconds()
 trip_durations.append(trip_length_seconds)

Take the shortest trip duration
print("Shortest trip: " + str(min(trip_durations)))

Reading date and time data in Pandas
get a particular column > rides[‘Start dateʼ]
get a particular row > rides.iloc[2] > class object

If we want pandas to treat columns as datetimes, we can use the argument
parse_dates in read_csv()
rides = pd.read_csv(‘capital-onebike.csv,̓ parse_dates = [‘Start date ,̓ ‘End dateʼ])

pandas is smart in figuring out the proper datetime format but if need to fix or
change
rides[‘Start dateʼ] = pd.to_datetime(rides[‘Start dateʼ], format = “%Y-%m-%d %H:
%M:%S”)
now
rides[‘Start dateʼ].iloc[2]
output > Timestamp class

now that they are datetimes
#create a duration column
rides[‘Durationʼ] = rides[‘End dateʼ] - rides[ʼStart dateʼ]

print(rides[‘Durationʼ].head(5))
we can convert this new column into seconds
rides[‘Durationʼ].dt.total_seconds().head()

Can summarize some datetime data in pandas
#average time out of the dock
rides[‘Durationʼ].mean()
output > timedelta object with mean time out

can use .sum()
or create percent out of dock
rides[‘Durationʼ].sum() / timedelta(days=91)
#this is the number of days between start and end date

#percent of rides by members
rides[‘Member typeʼ].value_counts() / len(rides)

further examples
rides[‘Duration secondsʼ] = rides[‘Durationʼ].dt.total_seconds()
#average duration per member type
rides.groupby(‘Member typeʼ)[‘Duration secondsʼ].mean()
.groupby() takes a column name and does all subsequent operations on each
group

we can also group by time using the .resample() method
#average duration by month
rides.resample(‘M,̓ on = ʼStart dateʼ)[‘Duration secondsʼ].mean()
‘Mʼ for month

#size per group
rides.groupby(‘Member typeʼ).size()

#first ride per group
rides.groupby(‘Member typeʼ).first()

Plot results
rides.resample(‘M,̓ on = ‘Start dateʼ)[‘Duration secondsʼ].mean().plot()

Example
Create joyrides
joyrides = (rides['Start station'] == rides['End station'])

Total number of joyrides

print("{} rides were joyrides".format(joyrides.sum()))

Median of all rides
print("The median duration overall was {:.2f} seconds"\
 .format(rides['Duration'].median()))

Median of joyrides
print("The median duration for joyrides was {:.2f} seconds"\
 .format(rides[joyrides]['Duration'].median()))

Import matplotlib
import matplotlib.pyplot as plt

Resample rides to monthly, take the size, plot the results
rides.resample('M', on = 'Start date')\
 .size()\
 .plot(ylim = [0, 150])

Show the results
plt.show()

Resample rides to be monthly on the basis of Start date
monthly_rides = rides.resample('M', on = 'Start date')['Member type']

Take the ratio of the .value_counts() over the total number of rides
print(monthly_rides.value_counts() / monthly_rides.size())

Group rides by member type, and resample to the month
grouped = rides.groupby('Member type')\
 .resample('M', on='Start date')

Print the median duration for each group
print(grouped['Duration'].median())

Timezones in pandas
start off ‘naiveʼ
rides[‘Durationʼ].dt.total_seconds().min()
output > -minutes #does not account for daylight savings

rides[ʼStart dateʼ].head(3).dt.tz_localize(‘America/New_Yorkʼ)
if we try to set a timezone
rides[‘Start dateʼ] = rides[‘Start dateʼ].dt.tz_localize(‘America/New_Yorkʼ)
this will not work

weʼll get an AmbiguousTimeError
how to handle this
rides[ʼStart dateʼ] = rides[‘Start dateʼ].dt.tz_localize(‘America/New_York,̓
ambiguous=‘NaTʼ)
rides[‘End dateʼ] = rides[‘End dateʼ].dt.tz_localize(‘America/New_York,̓
ambiguous=‘NaTʼ)
by passing the string ‘NaT,̓ we are saying if the converter gets confused, it should
set the bad result as ‘Not a Timeʼ
pandas is smart enough to skip over NaTs when it sees them, so methods
like .min() will just ignore this one row

now that the timezones are fixed recalculate durations
rides[‘Durationʼ] = rides[‘End dateʼ] - rides[‘Start dateʼ]
now letʼs look at the minimum
rides[‘Durationʼ].dt.total_seconds().min()
now intstead of getting a negative output we get a positive one

other common datetime operations in pandas
rides[‘Start dateʼ].head(3).dt.year or dt.month or dt.day

a unique datetime operation to pandas
.dt.day_name()
gives you the day of the week for each element in a datetime Series

Can also shift the indexes forward or backward
rides[‘End dateʼ].shift(1).head(3)
example of usefulness
lining up the end times of each row with the start time of the next one
this would allow you to compare each ride to the previous one

Example
Localize the Start date column to America/New_York
rides['Start date'] = rides['Start date'].dt.tz_localize('America/New_York',
 ambiguous='NaT')

Print first value
print(rides['Start date'].iloc[0])

Convert the Start date column to Europe/London
rides['Start date'] = rides['Start date'].dt.tz_convert('Europe/London')

Print the new value
print(rides['Start date'].iloc[0])

example
Shift the index of the end date up one; now subract it from the start date
rides['Time since'] = rides['Start date'] - (rides['End date'].shift(1))

Move from a timedelta to a number of seconds, which is easier to work with
rides['Time since'] = rides['Time since'].dt.total_seconds()

Resample to the month
monthly = rides.resample('M', on='Start date')

Print the average hours between rides each month
print(monthly['Time since'].mean()/(60*60))

Recap
Dates and calendars
the date() class takes a year, month, and day as arguments
a date objuect has accessors like .year, and also methods like .weekday()
date objects can be compared like numbers, using min(), max(), and sort()
you can subtract one date from another to get a timedelta
to turn date objects into strings, use the .isoformat() or .strftime() methods

Combining dates and times
the datetime() class takes all the arguments of date(), plus an hour, minute,
second, and microsecond
all of the additional arguments are optional; otherwise, theyʼre set to zero by
default
you can replace any value in a datetime with .replace() method
convert a timedelta into an integer with its .total_seconds() method
turn strings into dates with .strptime() and dates into strings with .strftime()

Timezones and daylight savings
a datetime is ‘timezone awareʼ when it has its tzinfo set, otherwise it is ‘timezone
naiveʼ
setting a timezone tells a datetime how to align itself to UTC, the universal time
standard
use the .replace() method to change the timezone of a datetime, leaving the date
and time the same
use the .astimezone() method to shift the date and time to match the new
timezone
dateutil.tz provides a comprehensive, updated timezone database

Easy and powerful timestamps in pandas

when reading a csv, set the parse_dates argument to be the list of columns which
should be parsed as datetimes
if setting parse_dates doesnʼt work, use the pd.to_datetime() function
grouping rows with .groupby() lets you calculate aggregates per group, such
as .first(), .min(), or .mean()
.resample() group rows on the basis of a datetime column, by year, month, day,
and so on
use .tz_localize() to set a timezone, keeping the date and time the same
use .tz_convert() to change the date and time to match a new timezone

