
Importing data with Python
by datacamp

plain text file > .txt
‘flatʼ files > ie .csv

Reading a text file 
filename = ‘huck_finn.txtʼ
file = open(filename, mode=‘rʼ)
text = file. read()
file.close()
‘modeʼ set to r makes sure that we can only read it
can set it to w to write
*this ensures that we donʼt accidentally write to it
now you will be able to print the file to your console to check it out
best practice to always close your connection 

a ‘withʼ statement allows you to create a context in which you can execute 
commands with the file open
with open(‘huck_finn.txt ,̓ ,̓ rʼ) as file: 

print(file.read())
this can help you to avoid having to directly close the connection
this with statement is called a ‘context managerʼ
once out of this clause/context, the file is no longer open 
this is called ‘bindingʼ a variable in the context manager construct

Flat files
text files containing records
unstructured table data
**this is in contrast to a relational database in which columns of distinct tables can 
be related
a record means a row of fields or attributes, each of which contains at most one 
item of information
example in the titanic.csv file
a record is a unique passenger onboard and each column is a feature or attribute 
such as name, gender, and cabin
a flat file can have a header 
a header is a row that occurs as the first row and describes the contents of the 
data columns
or states what th corresponding attributes or features in each column are
**important to know if your data has a header as it may alter your data import



values in flat files can be separated by more than just commas
ie a tab
these separations are called delimiters

Assigning data to a variable
if the data is numerical, we can use the numpy package to import that data as a 
numpy array
numpy arrays are standard for storing numerical data
fast, efficient, clean
essential for other packages like scikit-learn

using numpy function loadtxt
filename = ‘MNIST.txtʼ
data = np.loadtxt(filename, delimiter=‘,̓, skiprows=1, usecols=[0,2])
data
*a delimiter can be whitespace, always imperative to specify
‘skiprowsʼ argument here allows you to skip over the first row
in this example allows you to skip over the header and string MNIST
‘usecolsʼ argument allows you to choose which columns to import
in this example allows us to import the first and third columns of the data
can also use argument ‘dtypeʼ to set all entries to a specific data type
in the above example we could have done dtype=str which would import all entries 
as strings
**be aware loadtxt is great for basic cases but tends to break down when we have 
mixed datatypes

np.genfromtxt()
more versatile than np.loadtxt() can deal with more datatypes
ʼnamesʼ argument to True tells us there is a header
**because the data are of different types, data is an object called a structured 
array
**because numpy arrays have to contain elements that are all the same datatype, 
the structured array solves this by being a 1D array, where each element of the 
array is a row of the flat file imported

np.recfromcsv() is similar to np.genfromtxt() except that its default dtype is None
also has default delimiter ‘,̓  and default names=True

**numpy arrays are limited in their ability to have 2D labeled data structures with 
columns of potentially different types
this is where pandas DataFrames come in
they allow you to manipulate, slice, reshape, groupby, join, merge, perform 
statistics, work with time series data



pandas was created by Wes McKinney
**this library and package allow Python to act like R
pandas DataFrame = pythonic analog of Rʼs data frame
“A matrix has rows and columns. A data frame has observations and variables.”

Pickeled files
file type native to Python
reason for existence - for datatypes for which it isnʼt obvious how to store them
pickled files are serialized 
meaning able to be imported into Python, converting the object into a sequence of 
bytes or byte stream
example
import pickle
with open(‘pickled_fruit.pkl ,̓ ‘rbʼ) as file:

data = pickle.load(file)
print(data)
‘rbʼ argument is r for read-only and b for binary meaning computer-readable and 
not human-readable

Importing Excel spreadsheets
file = ‘urbanpop.xlsxʼ
data = pd.ExcelFile(file)
print(data.sheet_names)
Excel file often contains sheets 
can parse them out
this example
df1 = data.parse(ʼ1960-1966ʼ) #as a string
df2 = data.parse(0) #same sheet, calling index, setting as a float

Importing SAS and Stata files
SAS - Statistical Analysis System - popular in business and biostatistics
Stata - ‘statisticsʼ + ‘dataʼ - popular in economics and epidemiology

SAS is used for:
advanced analytics, multivariate analysis, business intelligence, data management, 
predictive analytics, and standard for computational analysis

most commons SAS files extensions are .sas7bdat and .sas7bcat
example
import pandas as pd
from sas7bdat import SAS7BDAT
with SAS7BDAT(‘urban pop.sas7bdatʼ) as file:

df_sas = file.to_data_frame()
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in this case binding the variable file to a connection urban pop in a context 
manager

Stata file example
import pandas as pd 
data = pd.read_stata(‘urbanpop.dtaʼ)

Importing HDF5 files
-Hierarchical Data Format version 5
-standard for storing large quantities of numerical data
HDF5 can scale to exabytes

1 exabyte is equal to 1,000 petabytes (PB).
1 exabyte is equal to 1,000,000 terabytes (TB).
1 exabyte is equal to 1,000,000,000 gigabytes (GB).
1 exabyte is equal to 1,000,000,000,000 megabytes (MB).
1 exabyte is equal to 1,000,000,000,000,000 kilobytes (KB).

import h5py
filename = ‘H-H1.LOSC.hdf5ʼ
data = h5py.File(filename, ‘rʼ) # ‘rʼ is for read
print(type(data))

HDF5 files have an interesting hierarchical structure
structure is similar to a dictionary
the keys are meta, quality, strain
the file data is appropriately organized off these keys

example using a LIDO HDF5 file
for key in data[‘metaʼ].keys():

print(key)
Output > Description, Detector, Duration, GPSstart, Observatory
could then access any metadata of interest say ‘Descriptionʼ and ‘Detectorʼ
print(np.array(data[‘metaʼ][‘Descriptionʼ]), np.array(data[‘metaʼ][‘Detectorʼ]))
Output > ʼStrain data time series from LIGOʼ ‘H1ʼ
data in the file and then which detector was used

Importing MATLAB
stands for Matrix Laboratory
-industry standard in engineering and science
data saved as .mat files

How to import these files into Python
SciPy package to the rescue
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scipy.io.loadmat() - read .mat files
scipy.io.savemat() - write .mat files
import scipy.io
filename = ‘workspace.matʼ
mat = scipy.io.loadmat(filename)
print(type(mat))
output > class ‘dictʼ

How this dictionary relates to MATLAB
keys are MATLAB variable names
values are MATLAB objects that are assigned to the variables

Introduction to relational databases
database that is based upon the Relational model of data 

The relational model of data is a conceptual framework for representing and 
organizing data in a relational database. 
It was introduced by E.F. Codd in 1970 and has since become the most widely 
used data model in the field of database management systems.
The relational model represents data as a collection of tables, also known as 
relations. 
Each table consists of rows (tuples) and columns (attributes). 
The rows represent individual records or instances, while the columns represent 
the attributes or properties of those records.
Key principles of the relational model include:

Tabular Structure: Data is organized into tables with rows and columns. Each 
table has a unique name and consists of a set of attributes with defined data 
types.
Primary Keys: Each table has a primary key that uniquely identifies each row 
within the table. The primary key ensures the uniqueness and integrity of the 
data.
Foreign Keys: Relationships between tables are established using foreign keys. 
A foreign key in one table refers to the primary key in another table, creating 
associations or dependencies between the tables.
Data Integrity: The relational model enforces integrity constraints, such as 
referential integrity, entity integrity, and data type constraints, to ensure the 
accuracy and consistency of the data.
Relational Algebra: The relational model provides a set of algebraic operations, 
such as selection, projection, join, and union, to manipulate and retrieve data 
from the tables.
Normalization: The relational model promotes data normalization, which 
involves breaking down tables into smaller, well-structured tables to eliminate 
redundancy and improve data integrity.

http://scipy.io
http://scipy.io
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The relational model offers a flexible and intuitive way to organize and manage 
data. 
It enables efficient storage, retrieval, and manipulation of data through the use of 
standardized operations and constraints. 
Relational databases, such as MySQL, PostgreSQL, Oracle, and SQL Server, are 
built based on the relational model and provide powerful tools for managing 
structured data.

Coddʼs 12 Commandments
Rule 0: The Foundation Rule

A relational database management system must be based on a solid 
foundation, providing a sound theoretical basis for data management.

Rule 1: The Information Rule
All information in a relational database is represented explicitly as values 
in tables.

Rule 2: Guaranteed Access Rule
Every single value in a relational database is accessible logically by using a 
combination of the table name, primary key, and column name.

Rule 3: Systematic Treatment of Null Values
Null values are supported and treated systematically to indicate missing or 
unknown information.

Rule 4: Active Online Catalog
The structure and metadata of the database, including table definitions, 
relationships, and integrity constraints, are stored in the system catalog 
and can be queried like other data.

Rule 5: Comprehensive Data Sublanguage Rule
The database system should support a complete, non-procedural 
language that enables users to define, query, and manipulate the data in 
the database.

Rule 6: View Updating Rule
All views that are theoretically updatable should also be updatable 
through the system.

Rule 7: High-Level Insert, Update, and Delete
The database system should support high-level insert, update, and delete 
operations, allowing users to modify data in a simple and intuitive manner.

Rule 8: Physical Data Independence
The application programs and activities of users should remain unaffected 
by changes in the physical storage structure or access methods.

Rule 9: Logical Data Independence
Changes in the logical structure (e.g., table definitions, relationships) 
should not affect the existing application programs.

Rule 10: Integrity Independence
Integrity constraints, such as primary key, foreign key, and other data 
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validation rules, should be specified and enforced separately from 
application programs.

Rule 11: Distribution Independence
The distribution of the data across different locations or sites should be 
invisible to users and applications.

PostgreSQL, MySQL, SQLite are all relational database management systems that 
use SQL query language
SQL stands for structured query language

There are many packages we could use to access an SQLite database 
example sqlite3 or SQLAlchemy
SQLAlchemy works with many other relational database management systems
Letʼs connect
example
from sqlalchemy import create_engine
engine = create_engine(ʼsqlite:///Northwind.sqlite')
the create_engine function fires up an SQL engine that will communicate our 
queries to the database
before we connect, we would like to know the names of the tables 
table_names = engine.table_names()
print(table_names)

Basic SQL query
SELECT * From Table_Name
-returns all columns of all rows of the table

Workflow of SQL querying
import packages and functions
create the database engine
connect to the engine
query the database
save query results to a DataFrame
close the connection
example
from sqlalchemy import create_engine
import pandas as pd
engine = create_engine(‘sqlite:///Northwind.sqlite')
con = engine.connect()
rs = con.execute(“SELECT * FROM Orders”) #rs stands for ‘relational SQL queryʼ
df = pd.DataFrame(rs.fetchall()) #fetchall fetches all rows
df.columns = rs.keys() #setting the dataframeʼs column names 
con.close()

sqlite:///Northwind.sqlite'
sqlite:///Northwind.sqlite'


check to ensure all went through as desired
print(df.head())

**can also use the context manager construct which will save you the trouble of 
potentially forgetting to close the connection 
from sqlalchemy import create_engine
import pandas as pd
engine = create_engine(‘sqlite:///Northwind.sqlite')
with engine.connect() as con:

rs = con.execute(“SELECT OrderID, OrderDate, ShipName FROM Orders”)
df = pd.DataFrame(rs.fetchmany(size=5))
df.columns = rs.keys()

**can do this all in one line of code
df = pd.read_sql_query(“SELECT * FROM Orders”, engine)
#first argument is query that you want
#second argument is engine that you want to connect to

**frequently will need to join tables
example on inner join
from sqlalchemy import create_engine
import pandas as pd
engine = create_engine(ʼsqlite:///Northwind.sqlite')
df = pd.read_sql_query(“SELECT OrderID, CompanyName FROM Orders INNER 
JOIN Customers on Orders.CustomerID = Customers.CustomerID”, engine)
print(df.head())

sqlite:///Northwind.sqlite'
sqlite:///Northwind.sqlite'



