
Intermediate Regression with statsmodel
by datacamp

multiple regression is a regression model with more than one explanatory variable
more explanatory variables can give more insight into the relationship between the 
explanatory variables and the response and provide better predictions
example - using the fish dataset (designating mass_g as response variable and 
length_cm as numeric explanatory variable, and species as categorical explanatory 
variable
from statsmodels.formula.api import ols
#**place the response varialbe on the left and the explanatory variable on the right
mdl_mass_vs_length = ols(‘mass_g ~ length_cm,̓ data=fish).fit()
#show the model coefficients using the params attribute
print(mdl_mass_vs_length.params)
**with a single numeric explanatory variable, you get one intercept coefficient and 
one slope coefficient

#change explanatory variable to ‘speciesʼ
mdl_mass_vs_species = ols(‘mass_g ~ species + 0,̓ data=fish).fit()
print(mdl_mass_vs_species.params)

**when you have a categorical explanatory variable, the coefficients are a little 
easier to understand if you add ‘+ 0ʼ
‘+ 0ʼ tells statsmodels not to include an intercept in the model
**output is one intercept for each category instead of one for the model
get one intercept coefficient for each category, ie. one coefficient for each species 
of fish
#now add both explanatory variables to the model
mdl_mass_vs_both = ols(‘mass_g~ length_com + species + 0,̓ data=fish).fit()
print(mdl_mass_vs_both.params)



output is one slope coefficient and an intercept coefficient for each category in 
the categorical variable
**above outputs show how drastically things can change as you add in additional 
features

Visualize with 1 numeric explanatory variable
import matplotlib.pyplot as plt
import seaborn as sns
sns.regplot(x=‘length_cm,̓ y=‘mass_g,̓ data=fish, ci=None)
plt.show()

standard visualization for a linear regression with a numeric explanatory variable

Visualization for 1 categorical variable
few possible plots, the simplest is to draw a box plot for each category
**the model coefficients are the means of each category 
#can show these on our boxplot with the ‘showmeansʼ argument



sns.boxplot(x=‘species ,̓ y=‘mass_g,̓ data=fish, showmeans=True)
plt.show()

Visualization of both the numerical and categorical explanatory variables 
*seaborn doesnʼt have an easy way to do this 

first extract the model coefficients into separate intercepts and the slope
*hue argument is invaluable when working with a categorical or continuous 
variable and want to color by its values
need to use plt.axline four times for each intercept
*axline draws a straightline defined by at least one point and the slope
‘xy1ʼ argument specifies the intercept with x at 0 and y as each species intercept
ʼslopeʼ argument is set to the slope coefficient which is the same for all species
specify a ‘colorʼ arugment to distinguish each species



**since all slopes are equal in all plt.axline call, the trend lines run parallel to each 
other
this is why this type of regression is called ‘parallel slopes regressionʼ

example
# Import ols from statsmodels.formula.api
from statsmodels.formula.api import ols

# Fit a linear regression of price_twd_msq vs. n_convenience
mdl_price_vs_conv = ols("price_twd_msq ~ n_convenience",
                        data=taiwan_real_estate).fit()

# Fit a linear regression of price_twd_msq vs. house_age_years, no intercept
mdl_price_vs_age = ols("price_twd_msq ~ house_age_years + 0", 
data=taiwan_real_estate).fit()

# Fit a linear regression of price_twd_msq vs. n_convenience plus 
house_age_years, no intercept
mdl_price_vs_both = ols('price_twd_msq ~ n_convenience + house_age_years + 0', 
data=taiwan_real_estate).fit()

# Print the coefficients
print(mdl_price_vs_both.params)

Predicting parallel slopes
the prediction workflow
import pandas as pd
import numpy as np
#key difference > for a single explanatory variable, the DataFrame has one column
#here we set it as a range
#remember arange(start, finish, interval)
expl_data_length = pd.DataFrame({length_cm :̓ np.arange(5, 61, 5)})
print(expl_data_length)
**for multiple explanatory variables you need to define multiple columns
**example - create a DataFrame that holds all combinations 
to do this use the product() function in the itertools module
*product() returns a Cartesian product of your input variables
Cartesian product outputs all combinations of its inputs
from intertools import product
product([‘A,̓ ‘B ,̓ ‘Cʼ], [1, 2])
length_cm = np.arange(5, 61, 5)
species = fish[‘speciesʼ].unique()
#.unique() used for categorical variables and extracts the unique values of your 



categorical variable
p = product(length_cm, species)
#transform the outp of the product function into a pandas DataFrame
expl_data_both = pd.DataFrame(p, columns=[‘length_cm,̓ ‘speciesʼ])
print(expl_data_both)

next add a column of predictions to the DataFrame
predict mass_g from length_cm (single explanatory variable)
prediction_data_length = expl_data_length.assign(mass_g = 
mdl_mass_vs_length.predict(expl_data))
predict mass_g from both explanatory variables
mass_g = expl_data_both.assign(mass_g = mdl_mass_vs_both.predict(expl_data))

Sidebar: .assign() method
In the context of data manipulation using libraries like Pandas in Python, the 
`assign()` method is used to create new columns in a DataFrame by applying 
specified functions to existing columns or adding constant values. It is a 
convenient way to add calculated or transformed columns to a DataFrame without 
modifying the original DataFrame in place.

The `assign()` method takes one or more keyword arguments, where each 



argument represents the name of the new column and the corresponding value or 
function to generate that column.

Here's the basic syntax of the `assign()` method:

```python
new_dataframe = old_dataframe.assign(new_column_name=value_or_function, ...)
```

Here's an example of how you might use the `assign()` method in Pandas:

```python
import pandas as pd

# Sample DataFrame
data = {'A': [1, 2, 3, 4, 5],
        'B': [10, 20, 30, 40, 50]}

df = pd.DataFrame(data)

# Using assign() to create a new column
new_df = df.assign(C = df['A'] * 2, D = df['B'] / 2)

print(new_df)
```

In this example, we have a DataFrame `df` with columns 'A' and 'B'. We use the 
`assign()` method to create two new columns 'C' and 'D'. Column 'C' is created by 
doubling the values in column 'A', and column 'D' is created by dividing the values 
in column 'B' by 2.

The `assign()` method returns a new DataFrame with the added columns, leaving 
the original DataFrame `df` unchanged.

Keep in mind that the `assign()` method is particularly useful for chaining 
operations and building more complex data transformations in a readable and 
concise manner.

Visualize 



**need to call two scatterplots
color argument to black to see prediction values

Manually calculating predictions for linear regression (repeat for practice)
example - single explanatory variable 
#params attribute contains the coefficients of the model
coeffs = mdl_mass_vs_length.params
print(coeffs)
intercept, slope = coeffs
#response value is the intercept plus the slope times the explanatory variable
explanatory_data = pd.DataFrame({‘length_cm :̓ np.arange(5, 61, 5)})
prediction_data = explanatory_data.assign(mass_g = intercept + slope * 
explanatory_data)
print(prediction_data)

Manually predicting multiple regression becomes clunky because you need to 
label the different intercepts for each categorical variable
NumPy has a function called select() that simplifies the process of getting values 
based on conditions
takes two arguments > list of conditions and a list of choices 
*both lists have to be of the same length
example 
conditions = [condition1, condition2, … condition_n]
choices = [choice1, choice2, … choice_n]
np.select(conditions, choices)
**read as follows ‘if condition 1 is met, take the first element in choices, if 
condition 2 is met, take the second element in choices, and so onʼ
example with fish dataset
conditions = [explanatory_data[‘speciesʼ] == ‘Bream,̓ explanatory_data[‘speciesʼ] 
== ‘Perch,̓ explanatory_data[‘speciesʼ] == ‘Pike ,̓ explanatory_data[‘speciesʼ] == 
“Roachʼ]
#condition list contains a condition statement so it returns a True or False



#choices list is the collection of intercepts extracted from the model coefficients
choices = [ic_bream, ic_perch, ic_pike, ic_roach]
intercept = np.select(conditions, choices)
print(intercept)
#our explanatory dataset contains 48 rows of data (12 for each species)
output contains 48 intercepts, 4 intercepts, each repeated 12 times
#next step
#response variable is the intercept plus the slope times the numeric explanatory 
variable (y + mb)
#assign function - creates new DataFrame by using old DataFrame and creating 
new columns
#new DF name, oldDF.assign(new col name = new col contents, **can put mult 
cols in)
prediction_data = explanatory_data.assign(intercept = np.select(conditions, 
choices), mass_g = intercept + slope * explanatory_data[‘length_cmʼ])
print(prediction_data)

example
# Create n_convenience as a range of numbers from 0 to 10
n_convenience = np.arange(0, 11)

# Extract the unique values of house_age_years
house_age_years = taiwan_real_estate["house_age_years"].unique()

# Create p as all combinations of values of n_convenience and house_age_years
p = product(n_convenience, house_age_years)

# Transform p to a DataFrame and name the columns
explanatory_data = pd.DataFrame(p, columns=['n_convenience', 
'house_age_years'])

# Add predictions to the DataFrame
prediction_data = explanatory_data.assign(price_twd_msq = 
mdl_price_vs_both.predict(explanatory_data))

print(prediction_data)

Assessing model performance
coefficient of determination also called R-squared shows how well the linear 
regression line fits the observed values
**a larger number is better (range is 0 to 1 with 0 being the worst possible fit and 1 
being a perfect fit
can get the coefficient of determination by using the rsquared attribute



example
print(mdl_mass_vs_length.rsquared)
adding more explanatory variables often increases the coefficient of determination 
(R^2)
**however, just like everything else there is a ‘sweet spotʼ
too many explanatory variables can cause overfitting
meaning that the model works well on ‘thisʼ dataset but poorly on ‘thatʼ dataset (ie 
the general population)
**adjusted coefficient of determination can help compensate this effect

the adjusted coefficient of determination penalizes more explanatory variables
noticeable with R^2 is small
or if nvar is a large fraction of nobs (number of explanatory variables is a sizable 
fraction of the number of observations)
get this metric in statsmodel with the rsquared_adj attribute

residual standard error (RSE) shows the typical size of the residuals
**a smaller number is better
RSE is not directly available as an attribute
get it this way:
rse = np.sqrt(model.mse_resid)
print(‘rse)length: ‘, rse_length)

Remember that parallel slopes enforces a common slope for each category
not always the best option
sometimes it is worth evaluating a different slope and to run separate models
example - again with the fish dataset
first split the dataset 
bream = fish[fish[‘speciesʼ] == ‘Breamʼ]
perch = fish[fish[ʼspeciesʼ] == ‘Perchʼ]
pike = fish[fish[‘speciesʼ] == ‘Pikeʼ]
roach = fish[fish[‘speciesʼ] == ‘Roachʼ]
now run four models 
all prediciting mass based on length



this gives us four different intercepts and slopes 
to make predictions on these models, we need to create a DataFrame of 
explanatory variables
**since the explanatory variables are the same for each model, we only need to 
make one DataFrame
explanatory_data = pd.DataFrame({‘length_cm: np.arange(5, 61, 5)})
print(explanatory_data)

now make predictions
make a new DF using the old DF and the assign() method, adding a new column 



and name it after the response variable
make four of these for our example which has four models (separate model 
coefficients for each species)

**you donʼt have to include ‘species = ‘ ‘ʼ in above code but it does help with 
plotting
rather than work with all DFs separately, concat them for convenience
predcition_data = pd.concat([prediction_data_bream, prediction_data_roach, 
prediction_data_perch, prediction_data_pike])
time to visualize
**you can not use regplot to visualize regression models across subsets of a 
dataset
use lmplot instead
sns.lmplot(x=‘length_cm,̓ y=‘mass_g,̓ data=fish, hue=‘species ,̓ ci=None)
x=explanatory variable, y=response variable, dataset, use hue to subset said data
here each species has its own line an slope
also sanity check our concatenated predictions and see if they align with our 
lmplot
sns.scatterplot(x=‘length_cm,̓ y=‘mass_g,̓ data=prediction_data, hue=‘species ,̓ 
ci=None, legend=False)
plt.show()



**as predicted, each line of prediction points follows seabornʼs trend lines
Remember separating out models isnʼt always better than running a single model 
on the whole dataset
always compare coefficient of determination
mdl_fish = ols(‘mass_g ~ length_cm + species ,̓ data=fish).fit()
print(mdl_fish.rsquared_adj)
output > 0.917
compare this against



a mixed bag which is often the case
do the same for residual standard error
 np.sqrt(model.mse_resid))

One model with an interaction
not ideal to be using different models for different bits of your dataset
better to specify a single model that contains intercepts and slopes ofr each 
category
this can be achieved through specifying ‘interactionsʼ between explanatory 
variables

**this is key, these ‘interactionsʼ depend on the dataset 
they require knowledge and expertise of the dataset 
**the effect of one explanatory variable on the expected response changes 
depending on the value of another explanatory variable, then those two 
explanatory variables interact
example - fish dataset
fish have different mass to length ratios 
effect of length on the expected mass is different for different species



How do we specify this?

*to include an interaction between the variables, just swap the + for a *
statsmodels figures out what interactions are needed on its own

**however to make your output easier to read it is better to explicitly document 
which interactions are included in the model
how to do this?
example
mdl_mass_vs_both_inter = ols(‘mass_g ~ species + species:length_cm + 0,̓ 
data=fish).fit()

remember the zero removes the global intercept 
we now get this:

**this gives us what we got from above above when we made four separate 



models but nice thing here is you get it in one set of code vs four

The code for the prediction flow is just as it was above
from itertools import product
length_cm = np.arange(5, 61, 5)
species = fish[‘speciesʼ].unique()
p = product(length_cm, species)
#remember that ‘productʼ from itertools gives up Cartesian product which gets us 
all the combinations of selected variables
explanatory_data = pd.DataFrame(p, columns=[‘length_cm,̓ ‘speciesʼ])
prediction_data = explanatory_data.assign(mass_g = mdl_mass_vs-
both_inter.predict(explanatory_data))
visualize as above above
then manually calculate the predictions
coeffs = mdl_mass_vs_both_inter.params
unpack the coefficients into four intercepts and four slopes
ic_bream, ic_perch, ic_pike, ic_roach, slope_bream, slope_perch, slope_pike, 
slope_roach = coeffs
now back to our friend np.select
conditions = [explanatory_data[‘speciesʼ] == ‘Bream,̓ explanatory_data[‘speciesʼ] 
== ‘Perch,̓ explanatory_data[‘speciesʼ] == ‘Pike ,̓ explanatory_data[‘speciesʼ] == 
‘Roachʼ]
ic_choices = [ic_bream, ic_perch, ic_pike, ic_roach]
intercept = np.select(conditions, ic_choices)
slope_choices = [slope_bream, slope_perch, slope_pike, slope_roach]
slope = np.select(condtions, slope_choices)
np.select reads ‘if species is Bream pick Bream interceptʼ and so on
prediction_data = explanatory_data.assign(mass_g = intercept + slope * 
explanatory_data[‘length_cmʼ]
print(prediction_data)

Simpsonʼs Paradox
occurs when the trend of a model on the whole dataset is very different from the 
trends shown by models on subsets of the dataset
trend = slope coefficient
example 
model of the whole dataset is positive slope but a model for each group shows a 
negative slope
How to reconcile this difference?
if possible, try to plot the dataset
articulate a question before you start modeling
visual example:



the first graph suggests that playing more games increases test score
in the second we reveal that each grouping is an age group
this changes the interpretation
showing that older children in general score higher
and playing lots of games actually is related to lower scores

Again reconciling the difference
resolving this is messy
often, the models including the goups will contain insight that youʼd miss other 
wise
*disagreements may reveal tha you need even more explanatory variables
*context is important

Two numeric explanatory variables
*this means visualizing three numeric variables (2 exp, 1 response)
3D scatter plot or 2D scatter plot with response as color
3D scatter plot needs to be interactive so that the audience can rotate the data to 
explore from different angles
2D with response as color is better
use the same modeling and prediction flow as seen above above
plotting is slightly different
example
sns.scatterplot(x=‘length_cm,̓ y=‘height_cm,̓ data=fish, hue=‘mass_gʼ)
*add second scatter plot
sns.scatterplot(x=‘length_cm,̓ y=‘height_cm,̓ data=prediction_data, hue=‘mass_g,̓ 
legend=False, marker=ʼsʼ)
*to avoid duplication remove the legend of one of the scatter plots
and change the markers 
ouput > 



color grid gives a nice overview of how the response variable changes over the 
plane of the explanatory variables

What if there is even more than two explanatory variables?
can do this by ‘faceting,̓ ie giving each group its own panel
example with fish dataset
grid = sns.FacetGrid(data=fish, col=‘species ,̓ hue=‘mass_g,̓ col_wrap=2, 
palette=‘plasmaʼ)
grid.map(sns.scatterplot, ‘length_cm,̓ ‘height_cmʼ)



it becomes tricky to include more than three numeric variables in a scatter plot
*you can include as many categorical variables as you like using faceting
*visualizing and plotting become harder with increasing number of variables

Modeling with more than two explanatory variables 

simpler syntax



ols(‘mass_g ~ length_cm * height_cm * species + 0,̓ data=fish).fit()

Only two-way interaction:

for 2-way interaction but not 3-way interaction

Prediction flow as expected



*modeling scales nicely with more variables
not the rapid increase in dimensionality
at this point visualizing is beyond the limit of visual interpretation

How linear regression works
goal is to find the best fit 
residual is actual response minus predicted response
want those residuals to be as short as possible
sum of squares metric measures all of these residuals and squares them to avoid 
negatives
the real question:
how to determine which intercept and slope coefficients will result in the smallest 
sum of squares?
how to solve this?
we need to take a detour into numerical optimization
which means finding the minimum point of a function
consider this quadratic equation
x = np.arange(-4, 5, 0.1)
y = x ** 2 - x + 10
xy_data = pd.DataFrame({‘x :̓ x, ‘y;: y})
sns.lineplot(x=‘x ,̓ y=‘y ,̓ data=xy_data)

plot shows that the minimum point of the function occurs when x is a little above 0 
and y is a little above 10
but how can we find it exactly?
can use calculus
y = x^2 - x + 10
derivative y / derivative x = 2x - 1



set derivative to 0
0 = 2x - 1
x = 0.5
y = 0.5^2 - 0.5 + 10 = 9.75
*however not all equations can be solved like this
Python also makes this easier for us with the minimize() function
performs numerical optimization in Python
minimize() takes x as an input and returns y as x-squared minus x + 10
first argument is the function to call without parentheses
second argument is an initial guess at the answer (*sometimes important for more 
complicated functions, but here you could pick anything)
from scipy.optimize import minimize
def calc_quadratic(x):

y = x ** 2 - x + 10
return y

minimize(fun=calc_quadratic, x0=3)
output (compare to above):

Linear regression algorithm for simple linear regression
define a function to calculate the sum of squares metric
def calc_sum_of_squares(coeffs):

intercept, slope = coeffs
…skipping some calculations (not explained in tutorial)
call minimize() to find coefficients that minimize this function
minimize(fun=calc_sum_of_squares, x0=0)

example
# Complete the function



def calc_sum_of_squares(coeffs):
    # Unpack coeffs
    intercept, slope = coeffs
    # Calculate predicted y-values
    y_pred = intercept + slope * x_actual
    # Calculate differences between y_actual and y_pred
    y_diff = y_pred - y_actual
    # Calculate sum of squares
    sum_sq = np.sum(y_diff ** 2)
    # Return sum of squares
    return sum_sq

# Call minimize on calc_sum_of_squares  
print(minimize(fun=calc_sum_of_squares,
               x0=[0, 0]))

# Compare the output with the ols() call.
print(ols("price_twd_msq ~ n_convenience", data=taiwan_real_estate).fit().params)
  
output > x: array([8.22423741, 0.79807971])
    Intercept        8.224
    n_convenience    0.798
**pretty darn comparable

Multiple logisitic regression
no new syntax here 
same as for linear regression
execept with logit() instead of ols()

Recall that when the response variable has two possible values, there are four 
outcomes for the model



quantify and visualize using a confusion matrix
conf_matrix = mdl_logit.pred_table()
remember the confusion matrix lets you calculate accuracy, sensitivity, and 
specificity

Prediction flow (also the same as above)
from itertools import product
explanatory1 = some_values
explanatory2 = some_values
p = product(explanatory1, explanatory2)
explanatory_data = pd.DataFrame(p, columns=[‘explanatory1,̓ ‘explanatory2ʼ])
prediction_data = explanatory_data.assign(mass_g = 
mdl_logit.predict(explanatory_data))
#for visualization purposes also creat a column with most likely outcomes
prediction_data[‘most_likely_outcomeʼ] = np. 
round(predicition_data[‘has_churnedʼ])
#then two scatter plots, one for data and one for prediction data

Example
# Create conf_matrix
conf_matrix = mdl_churn_vs_both_inter.pred_table()

# Extract TN, TP, FN and FP from conf_matrix
TN = conf_matrix[0,0]
TP = conf_matrix[1,1]
FN = conf_matrix[1,0]
FP = conf_matrix[0,1]

# Calculate and print the accuracy
accuracy = (TP + TN) / (TP + FP + FN + TN)
print("accuracy", accuracy)

# Calculate and print the sensitivity
sensitivity = TP / (TP + FN)
print("sensitivity", sensitivity)



# Calculate and print the specificity
specificity = TN / (TN + FP)
print("specificity", specificity)

Logisitic distribution
just a reminder on normal distribution

for the purposes of regression we care more about the area under this curve
by integrating the norm.pdf function (ie calculating the area underneath) we get 
another curve, the cummulative distribution curve

CDF curve for all distributions when x has its minimum possible value y will be 0
when x has its maximum possible value y will be 1
**think of the CDF as a transformation from the values of x to probabilities



what this tells us is when x is 1, the CDF curve is at 0.84
tells us for a normally distributed variable x, the probability that x is less the 1 is 
84%

**need a way to go back from probabilities to x-values
inverse CDF is also known as percent point function or PPF or quantile function
**calculated from norm.ppf
**same curve but with x and y axes flipped



Logisitic PDF similar to the Gaussian PDF but tails at the extreme left and right of 
the plot are fatter

Logistic distribution
logistic distribution CDF is also called the logistic function 

the inverse CDF is also called the logit function
*logit is also known as the log odds ratio for describing predictions

# Import logistic
from scipy.stats import logistic

# Create x ranging from minus ten to ten in steps of 0.1
x = np.arange(-10, 10.1, 0.1)

# Create logistic_dist
logistic_dist = pd.DataFrame({"x": x,
                              "log_cdf": logistic.cdf(x),
                              "log_cdf_man": 1 / (1 + np.exp(-x))})

# Using logistic_dist, plot log_cdf vs. x
sns.lineplot(x='x', y='log_cdf', data=logistic_dist)



# Show the plot
plt.show()

# Create p ranging from 0.001 to 0.999 in steps of 0.001
p = np.arange(0.001, 1, 0.001)

# Create logistic_dist_inv
logistic_dist_inv = pd.DataFrame({"p": p,
                                  "logit": logistic.ppf(p),
                                  "logit_man": np.log(p / (1 - p))})

# Using logistic_dist_inv, plot logit vs. p
sns.lineplot(x='p', y='logit', data=logistic_dist_inv)

# Show the plot
plt.show()

How logistic regression works
sum of squares does not work
y_actual is always 0 or 1
y_pred is always between 0 or 1
here we use the metric ‘Likelihoodʼ

‘Likelihoodʼ unlike sum of squares where the goal is to find the minimum possible 
value
with likelihood the goal is to find the maximum possible value
take the product of the predicted and actual responese
np.sum(y_pred * y_actual +  (1 - y_pred) * (1 - y_actual))
since y_actual only has two possible values, you get either:
y_actual = 1
y_pred * 1 + (1 - y_pred) * (1 - 1) = y_pred
how this works?
as y_pred increases, the metric increases too, and the maximum likelihood occurs 
when y_pred is one, the same as the actual value
or 
y_actual = 0
y_pred * 0 + (1 - y_pred) * (1 - 0) = 1 - y_pred
how this works?
as y_pred decreases, the metric decreases too, and the maximum likelihood 
occurs when y_pred is zero, the same as the actual value
**key is in either case, you get a higher likelihood score when the predicted 
response is close to the actual response



Log-likelihood
computing likelihood involves adding many very small numbers, leading to 
numerical error
log-likelihood is easier to compute
log_likelihood = np.log(y_pred) * y_actual + np.log(1 - y_pred) * (1 - y_actual)
**both equations give the same answer

Negative log-likelihood
maximizing log-likelihood is the same as minimizing negative log-likelihood
why do this?
the optimize package can only minimize functions
this tweak lets us get around that
-np.sum(log_likelihoods)

Nice example
# Complete the function
def calc_neg_log_likelihood(coeffs):
    # Unpack coeffs
    intercept, slope = coeffs
    # Calculate predicted y-values
    y_pred = logistic.cdf(intercept + slope * x_actual)
    # Calculate log-likelihood
    log_likelihood = np.log(y_pred) * y_actual + np.log(1 - y_pred) * (1 - y_actual)
    # Calculate negative sum of log_likelihood
    neg_sum_ll = -np.sum(log_likelihood)
    # Return negative sum of log_likelihood
    return neg_sum_ll
  
# Call minimize on calc_sum_of_squares  
print(minimize(fun=calc_neg_log_likelihood,
               x0=[0,0]))

# Compare the output with the logit() call.
print(logit("has_churned ~ time_since_last_purchase", data=churn).fit().params)




