
Introduction to Regression in R
by Richie Cotton and datacamp

Descriptiive statistics using R
#access the dplyr package
library(dplyr)
swedish_motor_insurance %>%

summarize_all(mean)

For correlation
swedish_motor_insurance %>%

summarize(
correlation = cor(n_claims, total_payment_sek))

*results in a positive correlation meaning that as claims increase, payments 
increase

Regression
a class of statistical modesl that let you explore the relationship between a 
response variable and some explanatory variables
given some explanatory variables, you can make predictions about the value of the 
response variable 

*Jargon
-response variable is also called the dependent variable



this is the variable that you want to predict (y)
-explanatory variable is also called the independent variable
variables that explain how the response variable will change (x)

More important jargon
*linear regression > the response variable is numeric
*logisitc regression > the response variable is logical

Logical variables or boolean variables represent one of two values (true or false)
logical variables are used to store binary information or to express the truth or 
falsity of a condition or statement
true is denoted as 1
false is denoted as 0

A little on logistic regression:
a statistical method used for modeling the relationship between a binary 
dependent variable and one or more independent variables. It is a fundamental 
technique in statistics and machine learning, particularly for classification 
problems where the goal is to predict a categorical outcome.

Key characteristics of logistic regression include:

1. **Binary Outcome:** Logistic regression is typically used when the dependent 
variable (response or outcome) is binary, meaning it has only two possible values, 
often represented as 0 and 1. For example, it is commonly used for problems such 
as yes/no, true/false, pass/fail, or spam/ham classification.

2. **Log-Odds Transformation:** Logistic regression models the relationship 
between the independent variables and the probability of the binary outcome 
being 1. To do this, it uses a log-odds transformation, which converts the 
probability into the log-odds or logit scale. The logistic function (sigmoid curve) is 
used to map the log-odds back to a probability.

3. **Independent Variables:** Logistic regression can involve one or more 
independent variables (also called features or predictors). The relationship 
between the independent variables and the log-odds of the binary outcome is 
modeled using a linear equation.

4. **Model Interpretation:** The coefficients (parameters) of the model represent 
the change in the log-odds of the outcome for a one-unit change in the 
corresponding independent variable, while holding other variables constant. These 
coefficients can be used to interpret the impact of each independent variable on 
the probability of the binary outcome.



5. **Maximum Likelihood Estimation:** The logistic regression model is estimated 
using maximum likelihood estimation (MLE). This method finds the set of 
coefficients that maximizes the likelihood of the observed data under the model.

6. **Assumptions:** Logistic regression assumes that the relationship between the 
independent variables and the log-odds of the outcome is linear. It also assumes 
that there is no multicollinearity among the independent variables and that the 
residuals follow a logistic distribution.

7. **Regularization:** Regularized forms of logistic regression, such as L1 (Lasso) 
and L2 (Ridge) regularization, can be used to prevent overfitting and select 
important features when dealing with high-dimensional data.

Logistic regression is widely used in fields like epidemiology, medicine, social 
sciences, and machine learning for tasks such as spam classification, credit 
scoring, churn prediction, and medical diagnosis. It is a valuable tool for modeling 
and understanding the relationships between variables in binary classification 
problems.

simple linear or simple logistic regression means that there is only one explanatory 
variable

Visualizing pairs of variables
#pull ggplot package
library(ggplot2)
#first argument is the dataframe, second uses the aes method to align 
independent and dependent variables
#geom_point > builds a scatter plot
#geom_smooth > bulids a trend line, ‘lmʼ sets the method argument to linear 
model
#ʼseʼ > standard error, to FALSE leaves it out
ggplot(swedish_motor_insurance, aes(n_claims, total_payment_sek)) + 

geom_point() + 
geom_smooth(

method = ‘lm,̓
se = FALSE)

‘Viewʼ function to view the dataset

Example
# Add a linear trend line without a confidence ribbon
ggplot(taiwan_real_estate, aes(n_convenience, price_twd_msq)) +



–
–

  geom_point(alpha = 0.5) +
  geom_smooth(method='lm')

output>

Fitting a linear regression
straight lines are a defining feature of a linear regression
straight lines are completely defined by two properties:

intercept is the y value when x is zero
slope is the steepness of the line > equal to the amount y increases if you 
increase x by 1

*equation for a straight line is > y = intercept + slope * x

Estimating the slope
find the trend line and determine the y-intercept by where it intersects the x-axis
*to estimate the slope we need two points (make it easy and pick points close to 
gridlines)
then calculate the change in y values between the points
then calculate the change in x values between the points
then divide the change in y by the change in x
this will result in our estimate for the slope

Running a model with R
lm(total_payment_sek ~ n_claims, data = swedish_motor_insurance)



#the first argument is a formula with the response variable to the left and the 
explanatory variable to the right
#data argument takes in the dataframe
ouput>

this result gives us two coefficients (intercept and slope (here slope is denoted 
under the explanatory variable title)
not written above, but on visualization and estimation this lines up with our guess 
of 20 and 3.5
y = intercept + m * x
our y is the total payment in Swedish krona
plug and play
total_payment_sek = 19.994 + 3.414 * n_claims
**what this all means? > we expect with every additional claim for the total 
payment to increase by 3.4

Categorical explanatory variables
*scatter plots are not ideal for categorical data
a histogram is a better option here
example using the fish dataset
ggplot(fish, aes(mass_g)) + 

geom_histomgram(bins=9) + 
facet_wrap(vars(species))

#facet_wrap gives a panel for each species
#it takes the name of the variable to split on, wrapped in the vars() function

Summary statistics using R, example ‘mean massʼ by species
fish %>%

group_by(species) %>%
summarize(mean_mass_g = mean(mass_g))

Linear model example
lm(mass_g ~ species, data = fish)



*important to break this down because it shows how confusing labeling can 
become
here the results give us four coefficients 
as you can see there are only three of the four fish listed 
the reason is that here the intercept is the mean mass of the bream
*it gets its own column because it is used as the intercept and in turn the other 
three species mass are calculated relative to the bream
*this is why you get negative mass as a result
*this approach can be useful for models with multiple explanatory variables 
but just plain confusing for simple linear regression 

How do we fix this?
lm(mass_g ~ species + 0, data = fish)
*this specifies that all the coefficients should be given relative to 0
*this also means that we are fitting a linear regression without an intercept term
output>

**key note > when you have a single categorical explanatory variable, the linear 
regression coefficients are the means of each category

Example
# Using taiwan_real_estate, plot price_twd_msq
ggplot(taiwan_real_estate, aes(price_twd_msq)) +
  # Make it a histogram with 10 bins
  geom_histogram(bins = 10) +
  # Facet the plot so each house age group gets its own panel
  facet_wrap(vars(house_age_years))

ouput>



Example
summary_stats <- taiwan_real_estate %>% 
  # Group by house age
  group_by(house_age_years) %>% 
  # Summarize to calculate the mean house price/area
  summarize(mean_by_group = mean(price_twd_msq))

# See the result
summary_stats

Making predictions
the principle behind predicting is to ask questions of the form > If I set the 
explanatory variables to these values, what value would the response variable 
have?
example using our fish dataset
using explanatory variable ‘length of fishʼ
we ask the question what is the mass of a fish at parameters of our choosing (we 
choose between 20 and 40cm)
we use ‘tibbleʼ which is a data frame variant that is easier to work with
R:
explanatory_data <- tibble(length_cm = 20m40)
#now call ‘predictʼ
predict(mdl_mass_vs_length, explanatory_data)
#predict returns a vector of predictions, one for each row of the explanatory data



output>

this vector data is hard to work with 
it is best to place it into the data frame alongside the explanatory variables
like this:
prediction_data <- explanatory_data %>% 

mutate(mass_g = predict(mdl_mass_vs_length, explanatory_data))
ouput>

showing these predictions
ggplot(bream, aes(length_cm, mass_g)) + 

geom_point() + 



geom_smooth(method = ‘lm,̓ se = FALSE) + 
geom_point(data = prediction_data, color = ‘blueʼ)

# weʼ ve created the original scatter plot then overlayed our prediction data as 
blue dots
*notice that the predictions follow the trend line exactly
this allows us to make predictions outside the observed data range (this is called 
extrapolating)
*remember that extrapolating can lead to some ridiculous results > you always 
need to know the context of the data that you are working in

Example
# Create a tibble with n_convenience column from zero to ten
explanatory_data <- tibble(
  n_convenience = 0m10
)

# Edit this, so predictions are stored in prediction_data
predict(mdl_price_vs_conv, explanatory_data)

# See the result
prediction_data <- explanatory_data %>%
  mutate(
    price_twd_msq = predict(mdl_price_vs_conv, explanatory_data)
  )

# Add to the plot
ggplot(taiwan_real_estate, aes(n_convenience, price_twd_msq)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  # Add a point layer of prediction data, colored yellow
  geom_point(data = prediction_data, color = 'yellow')

output>



Working with model objects
example
mdl_mass_vs_length <- lm(mass_g ~ length_cm, data = bream)
#can then pull the coefficients with the coefficients function
coefficients(mdl_mass_vs_length)

‘fitted valuesʼ is jargon for predictions on the original dataset used to create the 
model
fitted(mdl_mass_vs_length
output>



*shortcut for taking the explanatory variable columns from the dataset, then 
feeding them to the predict function

‘residualsʼ are a measure of inaccuracy in the model fit
residuals(mdl_mass_vs_length)
*each residual is the actual response value minus the predicted response value
output>



equivalent to >
bream$mass_g - fitted(mdl_mass_vs_length)

summary function 
shows an extended printout of the details of the model
*key points from the printout >
residuals > if the model is a good fit, the residuals should follow a normal 
distribution
*median should be close to 0 and 1Q and 3Q should have similar absolute values
summary() is meant to be read not to manipulate

In R to manipulate functions should return vectors or dataframes 
we can do this with >
library(broom)
#broom package provides functions that return data frames
tidy(mdl_mass_vs_length)
#tidy() returns the coefficient details in a data frame

augement(mdl_mass_vs_length)
#one row for each row of the data frame used to create the model
output>



glance(mdl_mass_vs_length)
#returns model-level results
output>

Example
# Get the coefficients of mdl_price_vs_conv
coeffs <- coefficients(mdl_price_vs_conv)

# Get the intercept
intercept <- coeffs[1]

# Get the slope
slope <- coeffs[2]

explanatory_data %>% 
  mutate(
    # Manually calculate the predictions
    price_twd_msq = intercept + (slope * n_convenience)



  )

# Compare to the results from predict()
predict(mdl_price_vs_conv, explanatory_data)

Regression to the mean
is a property of the data, not a type of model
linear regression can be used to quantify its effect
the concept > response value = fitted value + residual
again fitted value is the prediction by the model and residual is how much the 
model missed by
another way of looking at it > the stuff you explained + the stuff you couldnʼt 
explain

Why do residuals exist?
usually two reasons > problems with the model or fundamental randomness
a degree of randomness is our friend because it appropriately mimics the real 
world
outliers are often due to randomness
*extremes donʼt persist over time > the idea being that eventually their luck runs 
out
*this is the core of what we mean by the regression to the mean

A famous way of explaining this concept is using heritable height
we can use the Pearson father/son height pair dataset (reason for the infamy - 
Pearson of Pearson coeff fame)
with this data set we can ask do short fathers have short sons or do tall fathers 
have tall sons?
example
plt_son_vs_father <- ggplot(father_son, aes(father_height_cm, son_height_cm)) +

geom_point() + 
geom_abline(color = ‘green,̓ size=1) + 
coord_fixed()

#abline represents a line where sons and fathers heights are equal
#coord_fixed ensures that one centimeter on the x-axis appears the same as one 
centimeter on the y-axis
#going to add a regression line
plt_son_vs_father + 

geom_smooth(method = ‘lm,̓ se = FALSE)
output>



what does this tell us?
the blue regression line tells us that short fathers tend to have taller sons
and the tall fathers tend to have shorter sons
*there is this invisible pull back to the center, ie the regression to the mean

Example
# Using sp500_yearly_returns, plot return_2019 vs. return_2018
ggplot(sp500_yearly_returns, aes(return_2018, return_2019)) +
  # Make it a scatter plot
  geom_point() +
  # Add a line at y = x, colored green, size 1
  geom_abline(color='green', size=1) +
  # Add a linear regression trend line, no std. error ribbon
  geom_smooth(method='lm', se = FALSE) +
  # Fix the coordinate ratio
  coord_fixed()
 
output>



*clear signs that past performance is no guarantee of future results

# Run a linear regression on return_2019 vs. return_2018 using 
sp500_yearly_returns
mdl_returns <- lm(
  return_2019 ~ return_2018, 
  data = sp500_yearly_returns
)

# Create a data frame with return_2018 at -1, 0, and 1 
explanatory_data <- tibble(return_2018 = -1m1)

# Use mdl_returns to predict with explanatory_data
predict(mdl_returns, explanatory_data)

Transforming variables
what happens when the relationship is not linear?
in these instances you may need to transform the explanatory variable or the 
response variable or both of them
example comparing mass vs length in the perch fish



why does it curve?
possibly mass on the perch is being affected not just by length but also by width 
and height
mass is being affected by 3 dimensions instead of just 1 
how can we update this to change the relationship?
we can cube length to represent that the perch is growing in 3 directions
ggplot(perch, aes(length_cm ^ 3, mass_g)) + 

geom_point() + 
geom_smooth(method = ‘lm,̓ se = FALSE)

output>



we now have our linear relationship

*to model a variable that is to an exponent with R you need to change specific 
syntax
mdl_perch <- lm(mass_g ~ I(length_cm ^ 3), data = perch)
#ʼIʼ is the ‘Iʼ function, it represents ‘as isʼ

Predicting mass vs length
*in R need to specify just the lengths, not the lengths cubed
R will take care of the transformation automatically
explanatory_data <- tibble(length_cm = seq(10, 40, 5))
predictions code is the same
prediction_data <- explanatory_data %>%

mutate(
mass_g = predict(mdl_perch, explanatory_data))

*Now using above prediction data on your original non-transformed linear model 
has non-linear predictions
ggplot(perch, aes(length_cm, mass_g)) +

geom_point() + 
geom_smooth(method = ‘lm,̓ se = FALSE) +
geom_point(data = prediction_data, color = ‘blueʼ)



output>

*tip for transforming right skewed distribution data > use sqrt

Example
# From previous steps
mdl_price_vs_dist <- lm(
  price_twd_msq ~ sqrt(dist_to_mrt_m), 
  data = taiwan_real_estate
)
explanatory_data <- tibble(
  dist_to_mrt_m = seq(0, 80, 10) ^ 2
)
prediction_data <- explanatory_data %>% 
  mutate(
    price_twd_msq = predict(mdl_price_vs_dist, explanatory_data)
  )

ggplot(taiwan_real_estate, aes(sqrt(dist_to_mrt_m), price_twd_msq)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  # Add points from prediction_data, colored green, size 5
  geom_point(data = prediction_data, color = 'green', size = 5)

output>



Example
# From previous steps
mdl_click_vs_impression <- lm(
  I(n_clicks ^ 0.25) ~ I(n_impressions ^ 0.25),
  data = ad_conversion
)
explanatory_data <- tibble(
  n_impressions = seq(0, 3e6, 5e5)
)
prediction_data <- explanatory_data %>% 
  mutate(
    n_clicks_025 = predict(mdl_click_vs_impression, explanatory_data),
    n_clicks = n_clicks_025 ^ 4
  )

ggplot(ad_conversion, aes(n_impressions ^ 0.25, n_clicks ^ 0.25)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  # Add points from prediction_data, colored green
  geom_point(data=prediction_data, color='green')

Quantifying model fit
how strong is the linear relationship
first metric >



–
–

coefficient of determination or r-squared or R-squared
just for history sake > little r for simple linear regression and R for multiple 
explanatory variables
r-squared > the proportion of the variance in the response variable that is 
predictable from the explanatory variable
how it is read >

1 means a perfect fit
0 means the worst possible fit (no better than randomness)

as always the context of the data will determine how good a score is 
0.5 for a human subjective analysis may be considered a good score 
where 0.9 for a less complex process may be considered a bad score

Coefficient of determination is referred to as “Multiple R-squaredʼ in the 
summary() print out
we can pull it using the glance function
library(broom)
library(dplyr)
mdl_bream %>%
 glance() %>%

pull(r.squared)

*For simple linear regression, the interpretation of the coefficient of determination 
is simply the correlation between the explanatory and response variables, squared
bream %>%

summarize(
coeff_determination = cor(length_cm, mass_g) ^ 2)

Residual standard error (RSE) is the second metric
a typical difference between a prediction and an observed response
ie how much the predictions are typically wrong by
*has the same unit as the response variable 
how to pull >
mdl_bream %>%

glance() %>%
pull(sigma)

Manually calculating using R:
bream %>%

mutate(
residuals_sq = residuals(mdl_bream) ^ 2

) %>%
summarize(

resid_sum_of_sq = sum(residuals_sq), 
deg_freedom = n() -2,



rse = sqrt(resid_sum_of_sq / deg_freedom))
#degrees of freedom is the number of observations minus the number of model 
coefficients
for our pull and our manual calculation on RSE for bream was approx 74g
what this means? >
that typically the difference between predicted bream masses and observed 
masses is about 74g

Root-mean-square error (RMSE)
same as RSE but at the end you do not subtract the number of coefficients from 
n()
used to quantify how inaccurate the model predictions are 
however it is worse at comparisons between models
*RSE is typically better and used more often

Visualizing model fit
if a linear regression model is a good fit, then the residuals are approximatedly 
normally distributed, with mean zero
we can use diagnostic plots to help us with this
first is >
plot residuals vs. fitted values 

the blue line is a LOESS trend line
if residuals met the assumption that they are normally distributed with mean zero, 



then the trend line (like above) will closely follow the y = 0 line on the plot

Another diagnostic tool is the Q-Q plot

this Q-Q plot follows a normal distribution
the x-axis represents quantiles 
y-axis represents standarized residuals (this is the residuals divided by their 
standard deviation)
if the points track along the dotted line then they are normally distributed
above we have two outliers which are labeled 14 and 30 (numbers corresponding 
to respecitve rows)

Scale-location plot



shows the square root of the standardized residuals versus the fitted values
shows whether the size of the residuals gets bigger or smaller

Using R with these features
library(ggplot2)
library(ggfortify)
#this is where things get a little complicated, the which argument uses numbers 
instead of descriptive names 
#which = 1 for residuals vs fitted, 2 for q-q plot, and 3 for scale-location
#nice thing is you can draw all three at once
autoplot(model_perch, which = 1m3, nrow=3, ncol=1)
output>



Outliers, leverage, and influence
using R for extreme explanatory values
roach %>%

mutate(
has_extreme_length = length_cm < 15 | length_cm > 26) %>%

ggplot(aes(length_cm, mass_g)) + 
geom_point(aes(color = has_extreme_length)) + 
geom_smooth(method = ‘lm,̓ se = FALSE)

ouput>



Leverage
is a measure of how extreme the explanatory variable values are 
for one explanatory variable extremes can be found with filtering
with many explanatory variables the math becomes complicated and requires a 
model object
example
mdl_roach <- lm(mass_g ~ length_cm, data = roach)
hatvalues(mdl_roach)
#leverage for historical reasons is called hatvalues
returns a numeric vector with as many values as there are observations

Finding values with leverage
mdl_roach %>%

augment() %>%
select(mass_g, length_cm, leverage = .hat) %>%
arrange(desc(leverage)) %>%
head()

#we can find leverage within the augment method
#ʼselectʼ chooses the columns of interest (mass_g, length_cm, .hat (renamed in 
our argument as leverage)
#ʼarrangeʼ in descending order to get the largest leveraged values at the top



Influence
measures how much the model would change if you left the observation out of the 
dataset when modeling
called a ‘leave one outʼ metric
resembles torque
the influence of each observation is based on the size of the residuals and the 
leverage

Cookʼs distance
the most common measure of influence
based on the size of the residuals and the leverage
*bigger number denotes more influence for the observation
cooks.distance(mdl_roach) 
returns values as a vector
R example (just like above)
mdl_roach %>%

augment() >%>
select(mass_g, length_cm, cooks = .cooksd) %>%
arrange(desc(cooks)) %>%
head()

Removing the most influential roach
roach_not_short <- roach %>%

filter(length != 12.9)
ggplot(roach, aes(length_cm, mass_g)) +

geom_point() + 
geom_smooth(method = ‘lm,̓ se = FALSE) + 
geom_smooth(method = ‘lm, se = FALSE, data = roach_not_short, color = 

‘redʼ)
output>



show us the change in regression line if we were to remove the outlier roach of 
12.9cm
using autoplot for influence:
#which argument 4 = Cookʼs distance, 5 = Residuals vs Leverage, 6 = Cookʼs dist 
vs Leverage
autoplot(mdl_roach, which = 4m6, nrow=3, ncol=1)
these really just show clearly the labels of the most influential observations

High leverage points in red



Observations with a large distance to the nearest MRT station have the highest 
leverage, because most of the observations have a short distance, so long 
distances are more extreme.

High influence points in red

Observations with predictions far away from the trend line have high influence, 
because they have large residuals and are far away from other observations



Logistic Regression
example with churn dataset assessing open and closed banking accounts
has_churned values 0 or 1 with churn = 1, not churned = 0
mdl_churn_vs_recency_lm <- lm(has_churned ~ time_since_last_purchase, data = 
churn)
coeffs <- coefficients(mdl_churn_vs_recency_lm)
intercept <- coeffs[1]
slope <- coeffs[2]
#visualize
ggplot(churn, aes(time_since_last_purchase, has_churned)) +

geom_point() + 
geom_abline(intercept = intercept, slope = slope)

#*key use geom_abline over geom_smooth s that the line isnʼt limited to the extent 
of the data

*predictions are probabilities of churn, not amounts of churn
model predictions are fractional here

What happens if we use a linear model here?



*with a linear model we will get negative probabilities or probabilities greater than 
1 > both of which are impossible
this is a job for logistic regression

Logistic regression
is another type of generalized linear model
used when the response variable is logical
*responses follow logistic (S-shaped) curve
with R:
mdl_recency_glm <- glm(has_churned ~ time_since_last_purchase, data = churn, 
family = binomial)
#run glm (stands for generalized linear model)
#family argument gives you several options such as gaussian
#for logistic regression we want the family argument to be set to ‘binomialʼ
this will give us a report specifying coefficients
visualize (add to above code)
+
geom_smooth(method = ‘glm,̓ se = FALSE, method.args = list(family = binomial))
#this adds a logistic regression trend line 
#method.args argument contains a list of other arguments passed to glm
*now our logistic (S) curve never goes below 0 or 1



*what this example tells us is that closer customers are to a purchase the less 
likely they are to churn

Example
# Using churn, plot time_since_last_purchase
ggplot(churn, aes(time_since_last_purchase)) +
  # as a histogram with binwidth 0.25
  geom_histogram(binwidth = 0.25) +
  # faceted in a grid with has_churned on each row
  facet_grid(rows = vars(has_churned))

Predictions and odds ratio
getting the most likely outcome
that is, if the probability of churning is less than 0.5, the most likely outcome is 
that they wonʼt churn
if probability is greater than 0.5, itʼs more likely that they will churn
we get this by rounding the predicted probabilities
prediction_data <- explanatory_data %>%

mutate(has_churned = predict(mdl_recency, explanatory_data, type = 
‘respones), 

most_likely_outcome = round(has_churned))
#ʼtypeʼ argument set to ‘responseʼ gets us the probability of churning
Visualizing:
plt_churn_vs_recency_base +

geom_point(
aes(y = most_likely_outcome), 
data = prediction_data,
color = ‘greenʼ)

output>



we can see clearly where the prediction points lie and the switch happens at 
probability of 0.5

Odds ratios
is the probability of something happening divided by the probability that it doesnʼt
odds ratio = probability / (1 -probability)
example
0.25 / (1-0.25) = 1/3

Caluculating with R
prediction_data <- explanatory_data %>%

mutate(has_churned = predict(mdl_recency, explanatory_data, type = 
‘respones), 

most_likely_outcome = round(has_churned),
odds_ratio = has_churned / (1 - has_churned))

#here we are dividing the predicted probability by 1 minus the predicted 
probability
Visualizing:
ggplot(

prediction_data, 
aes(time_since_last_purchase, odds_ratio)) +
geom_line() + 
geom_hline(yintercept = 1, linetype = ‘dottedʼ)



output>

here the odds ratio is 1 indicating that churning is just as likely as not churning
below 1 the chance of churning is less than the chance of not churning
above 1 the chance of churning is greater than the chance of not churning
near the right upper corner the chance is about 5 times more for the chance of 
churning than not churning

Visualization contʼd:
*nice property of logistic regression odds ratios is that on a log-scale, they 
change linearly with the explanatory variable
above code + 
#created data
scale_y_log10()
output>



Calculating log odds ratio contʼd:
prediction_data <- explanatory_data %>%

mutate(has_churned = predict(mdl_recency, explanatory_data, type = 
‘responseʼ), 

most_likely_outcome = round(has_churned),
odds_ratio = has_churned / (1 - has_churned),
log_odds_ratio = log(odds_ratio),
log_odds_ratio1 = predict(mdl_recency, explanatory_data))

#logarithm od odds ratios is another common way of describing logistic regression 
predictions
*such a common way that predict function by default will return the log odds ratio
these pieces of code are equivalent:
log_odds_ratio = log(odds_ratio),
log_odds_ratio1 = predict(mdl_recency, explanatory_data))

Comparing scales



most likely outcome is easiest to understand but lacks precision
odds ratio falters in non-linear relationships as it becomes challenging to reason 
about how changes in the explanatory variable will change the response
log odds is difficult to interpret for individual values, but the linear relationship that 
it creates with the explanatory variables makes it easy to reason about change

Example
# From previous step
prediction_data <- explanatory_data %>% 
  mutate(   
    has_churned = predict(mdl_churn_vs_relationship, explanatory_data, type = 
"response"),
    odds_ratio = has_churned / (1 - has_churned)
  )

# Using prediction_data, plot odds_ratio vs. time_since_first_purchase
ggplot(prediction_data, aes(time_since_first_purchase, odds_ratio)) +
  # Make it a line plot
  geom_line() +
  # Add a dotted horizontal line at y = 1
  geom_hline(yintercept=1, linetype='dotted')

Example
# Update the data frame
prediction_data <- explanatory_data %>% 
  mutate(   
    has_churned = predict(mdl_churn_vs_relationship, explanatory_data, type = 
"response"),
    odds_ratio = has_churned / (1 - has_churned),
    log_odds_ratio = log(odds_ratio)
  )

# Update the plot
ggplot(prediction_data, aes(time_since_first_purchase, odds_ratio)) +



  geom_line() +
  geom_hline(yintercept = 1, linetype = "dotted") +
  # Use a logarithmic y-scale
  scale_y_log10()

Quantifying logisitic regression fit
we assess this not with diagnositc plots but with confusion matrices

confusion matrix one of the few R tasks done better in base code than in the 
tidyverse
example
madl_recency <- glm(has_churned ~ time_since_last_purchase, data = churn, 
family = ‘binomialʼ)
#get actual responses from has_churned column
actual_response <- churn$has_churned
#get predicted responses from the model
#ʼfittedʼ returns the predicted values of each observation in the dataset
#these fitted values are probabilities
#get the most likely outcome round the values to 0 or 1
predicted_response < round(fitted(mdl_recency))
#use ‘tableʼ to get the counts of each combination of values
outcomes <- table(predicted_response, actual_response)
output>

Visualize:
library(yardstick)
confusion <- conf_mat(outcomes)
autoplot(confusion)
output>



Performance metrics
#ʼevent_levelʼ represents the responses which in this example are in the second 
column
summary(confusion, event_level = ‘secondʼ)

Accuracy
the proportion of correct predictions
accuracy = TN + TP / TN + FN + FP + TP 
in R:
summary(confusion) %>%

slice(1)

Sensitivity
the proportion of true positives
sensitivity = TP / FN + TP
in R:
summary(confusion) %>%

slice(3)
higher sensitivity is better



Specificity
the proportion of true negatives
specificity = TN / TN + FP
higher specificity is better
*however tradeoff where improving specificity will decrease sensitivity, or 
increasing sensitivity will decrease specificity


