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Introduction to Statistics in R
by Maggie Matsui and datacamp

descriptive statistics > describe and summarize data
inferential statistics > use a sample of data to make inferences about a larger 
population

Most common types of data
numeric (quantitative) > numeric values

contiunuous (measured) > ie airplane speed or time waiting in line
discrete (counted) > ex number of pets a person has or number of packages 
shipped

categorical (qualitative) > valuest that belong to distinct groups
nominal (unordered) > ie married/unmarried or county of residence
oridinal (ordered) > ex survey questionaire with answer range from strongly 
disagree to strongly agree

*categorical data can be given numbers as placeholders

Mean with R
often called the ‘averageʼ
add up all the numbers of interest and divide by the total number of data points
how to get using R > ex mean of hours slept by a group of mammals
mean(msleep$sleep_total)

Median
value where 50% of the data is lower than it, and 50% of the data is higher
with R:
#sort all the data in this case from least to greatest
sort(msleep$sleep_total)
#find the middle > in this example it is index 42
sort(msleep$sleep_total)[42]

Mode
the most frequent value in the dataset
in R:
#count how many occurrences and sort in descending order
msleep %>% count(sleep_total, sort = TRUE)
*mode is often used for categorical variables since they are often unordered and 
have no inherent numerical representation
#for another variable
msleep %>% count(vore, sort = TRUE)



example code 
#pull dataset 
msleep %>%
#pull all the insectivores from the dataset

filter(vore == ‘insectiʼ) %>%
#get the mean and median of this group

summarize(mean_sleep = mean(sleep_total), 
median_sleep = median(sleep_total))

*remember mean is more sensitive to extreme values 
mean is more sensitive to extreme values so works best with symmetrical datasets
can visualize the symmetry of the data by creating a histogram 

non-symmetrical data is called skewed data
left-skewed > data is piled on the right
right-skewed > data is piled on the left
for this kind of data median is a better source of center measurement
*mean is pulled in the direction of the skew
lower than the median on the left-skewed data
higher than the median on the right-skewed data

Example
# Filter for Belgium
belgium_consumption <- food_consumption %>%
  filter(country == "Belgium")

# Filter for USA
usa_consumption <- food_consumption %>%
  filter(country == "USA")

# Calculate mean and median consumption in Belgium
mean(belgium_consumption$consumption)
median(belgium_consumption$consumption)

# Calculate mean and median consumption in USA
mean(usa_consumption$consumption)
median(usa_consumption$consumption)

food_consumption %>%
  # Filter for Belgium and USA
  filter(country %in% c("Belgium", "USA")) %>%
  # Group by country



  group_by(country) %>%
  # Get mean_consumption and median_consumption
  summarize(mean_consumption = mean(consumption),
           median_consumption = median(consumption))

food_consumption %>%
  # Filter for rice food category
  filter(food_category == "rice") %>%
  # Create histogram of co2_emission
  ggplot(aes(co2_emission)) +
    geom_histogram()

food_consumption %>%
  # Filter for rice food category
  filter(food_category == "rice") %>% 
  # Get mean_co2 and median_co2
  summarize(mean_co2 = mean(co2_emission),
            median_co2 = median(co2_emission))

Variance
measures the average distance from each data point to the dataʼs mean
calculating with R:
#calculate the distances between each point and the mean to get one number for 
every data point
dists <- msleep$sleep_total - mean(msleep$sleep_total)
#print this calculation
dists
#then square each distance and add them together
squared_dists <- (dists)^2
sum_sq_dists <- sum(squared_dists)
sum_sq_dists
#divide the sum of squared distances by the number of data points minus 1 (our 
example 83 points)
sum_sq_dists/82 
**remember the units of variance are squared
*the higher the variance, the larger the spread

We can calculate all of this using the ‘varʼ function
var(msleep$sleep_total)

Standard deviation is calculated by taking the square root of the variance
in R:



sqrt(var(msleep$sleep_total))

Can also calculate using the ‘sdʼ function
sd(msleep$sleep_total)
*standard deviation units are not squared
this is one of the reasons when measuring spread standard deviation is preferred

Mean absolute deviation
takes the absolute value of the distances to the mean, and then takes the mean of 
those differences
dists <- msleep_total - mean(msleep$sleep_total)
mean(abs(dists))

Standard deviation vs. mean absolute deviation
SD squares distances, penalizing longer distances more than shorter ones
MAD penalizes each distance equally

Quartiles
split up the data into four equal parts
using R:
quantile(msleep$sleep_total)

Boxplots use quartiles
ggplot(msleep, aes(y = sleep_total)) + geom_boxplot()

Percentiles
we can split the data into other equal parts besides quarters
we can do this using the ‘probsʼ argument 
the ‘probsʼ argument takes in a vector of proportions
quantile(msleep$sleep_total, probs = c(0, 0.2, 0.4, 0.6, 0.8, 1))

A shortcut via the ‘seqʼ function
takes in the lowest number, the highest number, and the number to jump by
seq(from, to, by)
example:
quantile(msleep$sleep_total, probs = seq(0, 1, 0.2)) 

Interquartile range (IQR)
*also the height of the box in the boxplot 
quantile(msleep$sleep_total, 0.75) - quantile(msleep$sleep_total, 0.25)

Outlier
data point that is substantially different from the others 



how to know what is substantially different?
rule of thumb:
data < Q1 - 1.5 x IQR 
or 
data > Q3 + 1.5 x IQR

Finding outliers using R:
iqr <- quantile(msleep$bodywt, 0.75) - quantile(msleep$bodywt, 0.25)
lower_threshold <- quantile(msleep$bodywt, 0.25) - 1.5 * iqr
upper_threshold <- quantile(msleep$bodywt, 0.75) + 1.5 * iqr
#now filter to find the outliers
msleep %>% filter(bodywt < lower_threshold | bodywt > upper_threshold) %>%

select(name, vore, sleep_total, bodywt)

Example
# Calculate variance and sd of co2_emission for each food_category
food_consumption %>% 
  group_by(food_category) %>% 
  summarize(var_co2 = var(co2_emission),
           sd_co2 = sd(co2_emission))

# Create subgraphs for each food_category: histogram of co2_emission
ggplot(food_consumption, aes(co2_emission)) +
  # Create a histogram
  geom_histogram() +
  # Create a separate sub-graph for each food_category
  facet_wrap(~ food_category)

# Calculate total co2_emission per country: emissions_by_country
emissions_by_country <- food_consumption %>%
  group_by(country) %>%
  summarize(total_emission = sum(co2_emission))

# Compute the first and third quartiles and IQR of total_emission
q1 <- quantile(emissions_by_country$total_emission, 0.25)
q3 <- quantile(emissions_by_country$total_emission, 0.75)
iqr <- q3 - q1

# Calculate the lower and upper cutoffs for outliers
lower <- q1 - 1.5 * iqr
upper <- q3 + 1.5 * iqr

# Filter emissions_by_country to find outliers



emissions_by_country %>%
  filter(total_emission < lower | total_emission > upper)

Measuring Chance
Whatʼs the probability of an event?
P(event) = # ways event can happen / total # of possible outcomes
Probability is always between zero and 100 percent
if probability of something is zero than it is impossible 
100% something will certainly happen

Sampling from a data frame using R:
#data frame is sales_counts
#ʼsample_nʼ function takes in a data frame and the number of rows we want to pull 
out
#sample_n chooses randomly
sales_counts %>% sample_n(1)

Set a random seed
using R (example seed 5 - can be any number):
set.seed(5)
to ensure we get the same results each time we run the script
seed is a number that Rʼs random number generator uses as a starting point so 
that we will generate the same random value each time

Sampling without replacement 
means that once an item is picked that item is not placed back into the proverbial 
bag to potentially get randomly picked again
above R code is sampling without replacement

Sampling with replacement 
means that even if an item is picked that item is placed back into the proverbial 
bag to potentially get randomly picked again
with R: 
sales_counts %>% sample_n(2, replace = TRUE) 
or another example using 5 samples
sample(sales_team, 5, replace = TRUE)

*Independent events
two events are independent if the probaility of the second event isnʼt affected by 
the outcome the first event
in general sampling with replacement, each event is independent

*dependent events



two events are dependent if the probability of the second event is affected by the 
outcome of the first event
ie sampling without replacement

Example
# Calculate probability of picking a deal with each product
amir_deals %>%
  count(product) %>%
  mutate(prob = n/sum(n))
#mutate() creates a new column
#name of new column here is ‘probʼ

Probability distribution
describes the probability of each possible outcome in a scenario
‘expected valueʼ of a distribution is the mean of a probability distribution
calculate this by multiplying each value by its probability 
example

*probabiliy = area
calculate probabilities of different outcomes by taking areas of the probability 
distribution
example (what is probability that a die roll is less than 2?)

this a discrete uniform distribution
all outcomes have the same probability



Sampling from discrete distributions using R
using data frame ‘dieʼ
rolls_10 <- die %>%

sample_n(10, replace = TRUE)
rolls_10

Visualize this example
ggplot(rolls_10, aes(n)) + geom_histogram(bins = 6)

*remember law of large numbers > as the size of you sample increases, the 
sample mean will approach the expected value

Example
# Create a histogram of group_size
ggplot(restaurant_groups, aes(group_size)) +
  geom_histogram(bins = 5)

# Create probability distribution
size_distribution <- restaurant_groups %>%
  count(group_size) %>%
  mutate(probability = n / sum(n))

# Calculate probability of picking group of 4 or more
size_distribution %>%
  # Filter for groups of 4 or larger
  filter(group_size >= 4) %>%
  # Calculate prob_4_or_more by taking sum of probabilities
  summarize(prob_4_or_more = sum(probability))

Continuous distributions
recall we use discrete distributions to model situations that involve discrete or 
countable variables
continuous uniform distribution can be modeled with a probability distribution 
*the complexity here is that there are an infinite number of possibilities
we can use a continuous uniform distribution to represent equal opportunity for 
each of these infinite possibilities
example
waiting at a bus stop where the bus arrives in 12 minute intervals
can use a continuous uniform distribution 
here probability still equates to area
say we want to know the probability of waiting between 4 and 7 minutes
P(4 < wait time < 7)
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7-4=3 = width of our rectangle
1/12 = height of our rectangle
area = wxh 
area = 3 x 1/12 = 1/4 = 25%

using R:
we can use the ‘punifʼ function
used to calculate the cumulative distribution function (CDF) of a continuous 
uniform distribution
CDF gives you the probability that a random variable following a uniform 
distribution is less than or equal to a specific value
punif function arguments are:

q which represents the quantile (ie the value for which you want to calculate 
the cumulative probability)
min which represents the minimum value of the uniform distribution
max which represents the maximum value of the uniform distribution
lower.tail which is a logical value (True or False) indicating whether you want to 
calculate the probability for values less than or equal to q (True) or greater 
than q (False)

our example, still at the bus stop, we want to know wait time <7 minutes
punif(7, min=0, max=12)
output > 0.5833
for probability greater than 7 minutes we now need to use lower.tail argument
punif(7, min = 0, max = 12, lower.tail = False)
how about for our above example between 4 and 7 minutes
punif(7, min=0, max=12) - punif(4, min=0, max=12)

Continuous distributions do not have to be uniform
*no matter the shape the area beneath it must always equal 1

Example
# Set random seed to 334
set.seed(334)

# Generate 1000 wait times between 0 and 30 mins, save in time column
# use runif function to generate random numbers from a uniform distribution
wait_times %>%
  mutate(time = runif(1000, min = 0, max = 30)) %>%
  # Create a histogram of simulated times
  ggplot(aes(time)) + 
    geom_histogram(bins=30)

output>



Binomial distribution
probability distribution of the number of successes in a sequence of independent 
trials
outcome has two possible values
yes/no, 0/1, success/failure, win/loss, etc
think coin flip (heads/tails)

using R:
rbinom function
arguments > (# of trials, # of coins, # probability of heads/success)
example flipping a coin
rbinom(1, 1, 0.5)
ie 1 trial, 1 coin, 50% probability for each value

another example
rbinom(10, 3, 0.5)
10 flips of 3 coins each with a prob of 50%
output > will be 10 values representing the total number of heads from each set of 
flips

binomial distribution can tell us the probability of getting some number of heads in 
a sequence of coin flips
*it is a discrete distribution since we are working with a countable outcome
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described using two parameters
n: total number of performances (2nd rbinom argument)
p: probability of success (3rd rbinom argument)

Finding a specific set of successes from a certain amount of trials we use the 
probability mass function (PMF)
the PMF of the binomial distribution gives the probability of getting exactly ‘xʼ 
successes in ‘sizeʼ trials with a success probability of ‘probʼ

x is the number successes you want to calculate the probability for 
size is the number of trials or observations in each experiment
prob is the probability of success in each trial

*we get PMH of binomial distribution in R using the dbinom(x, size, prob) function
example P(heads=7):
dbinom(7, 10, 0.5)
output > 0.117 (approx 12% chance that 7 of them will be heads)

What if we wanted to get the probability of getting a number of successes less 
than or equal to the first argument?
say in our example the probability of gettin 7 or fewer heads out of 10 coins
here we would use Rʼs pbinom function
pbinom(7, 10, 0.5)
pbinom function is used to calculate the cumulative probability of a binomial 
function
we call this the cumulative distribution function (CDF)
CDFs provide a way to understand how the probability of a random variable taking 
on a value less than or equal to a specific number changes across the range of 
possible values
F(x) = P(X <orequalto x)
where the probability of X takes on a value less than or equal to x
CDFs range from 0 to 1 as probabilities do
a non-decreasing function > as x increases, F(x) stays the same or increases

*can use the lower.tail argument to get the probability of a number of successes 
greater than the first argument
example
pbinom(7, 10, 0.5, lower.tail=FALSE)

Expected value of the binomial distribution can be calculated by multiplying n*p
EV = n x p
example, expected number of heads when we flip 10 coins is 10 x 0.5 = 5

*always remember in order for binomial distribution to apply, each trial must be 
independent



meaning one trial does not have an effect on the other

Example
# Set random seed to 10
set.seed(10)

# Simulate 52 weeks of 3 deals
deals <- rbinom(52, 3, 0.3)

# Calculate mean deals won per week
mean(deals)

Normal distribution
‘bell curveʼ
symmetrical
left side is a mirror image of right side
area beneath the curve is 1
the probability never hits 0 > 0.006% of its area is contained beyond the edges of 
this graph
normal distribution is described by its mean and std
what does this mean? >

*when mean is 0 and a standard deviation of 1 on a normal distribution, it is called 
standard normal distribution
68% of area falls within 1 std of mean
95% of area falls within 2 std of mean
99.7 of area falls within 3 std of mean
this is referred to as the 68-95-99.7 rule



Alof of RWD falls naturally into the normal distribution
we can use this distribution to answer lots of questions 
we can use the pnorm function
the pnorm function is used to calculate the CDF of the standard normal 
distribution
this is also referred to as the Z-distribution
pnorm allows you to calculate the probability that a random variable is less than or 
equal to a specified value (usually denoted as ʼxʼ)
pnorm returns the area under the standard normal curve to the left of the given 
value ‘xʼ
exampe percent of woman shorter than 154cm
pnorm(154, mean = 161, sd = 7)
output > 0.159 (approx 16% of woman are shorter than 154cm)

for taller (ie the area to the right of x)
pnorm(154, mean=161, sd=7, lower.tail=FALSE)
output > 0.841
for between 154cm and 157cm
pnorm(157, mean=161, sd=7) - pnorm(154, mean=161, sd=7)

qnorm can be used to calculate percentiles of the standard normal distribution 
this function allows you to find values of a random variable that correspond to 
specific probabilities or percentiles in the standard normal distribution
qnorm(0.9, mean=161, sd=7)
output > 169.97 (approx 90% of women are shorter than 170cm)



find the height where 90% of women are taller than
qnorm(0.9, mean=161, sd=7, lower.tail=FALSE)
ouput > 152.03 (approx 90% of women are taller than 152cm)

We can generate random numbers from a normal distribution using rnorm
rnorm(sample size, mean, std)
our example, generate 10 more random heights
rnorm(10, mean=161, sd=7)

The Central Limit Theorem (CLT)
this is the key to what makes the normal distribution so powerful
show in a simple example
we use the ‘cʼ function to create vectors or combine multiple values into a single 
vector
‘cʼ stands for combine or concatenate
example, creating a die and doing a sample roll of die 5 times 
die <- c(1,2,3,4,5,6)
sample_of_5 <- sample(die, 5, replace = TRUE)
then take the mean
mean(sample_of_5)
now we want to repeat this process 10 times
use the replicate function
sample_means <- replicate(10, sample(die, 5, replace = TRUE) %>% mean())
if we were to continue to increase the sample size and plot we would see that the 
sampling distribution comes closer and closer to the normal distribution
This is the phenomenon referred to as the Central Limit Theorem
Official CLT definition > the sampling distribution of a statistic becomes closer to 
the normal distribution as the number of trials increases
*key factor > CLT only applies when samples ore taken randomly and are 
independent
CLT also applies to std
CLT also applies to distribution of the sample proportions
*since these sampling distributions are normal, we can take their mean to get an 
estimate of a distributionʼs mean, std, or proportion
CLT comes in handy when you have a huge population and donʼt have the 
resources to collect data on every piece of the population
with this distribution we can take a smaller sample and be confident in calculating 
a mean, std, or proportion that will equate to the entirety of the population

Example
# Set seed to 104
set.seed(104)
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# Sample 20 num_users from amir_deals and take mean
sample(amir_deals$num_users, size = 20, replace = TRUE) %>%
  mean()

# Repeat the above 100 times
sample_means <- replicate(100, sample(amir_deals$num_users, size = 20, replace 
= TRUE) %>% mean())

# Create data frame for plotting
samples <- data.frame(mean = sample_means)

# Histogram of sample means
ggplot(samples, aes(mean)) +
  geom_histogram(bins=10)

Example
# Set seed to 321
set.seed(321)

# Take 30 samples of 20 values of num_users, take mean of each sample
sample_means <- replicate(30, sample(all_deals$num_users, size=20) %>% 
mean())

# Calculate mean of sample_means
mean(sample_means)

# Calculate mean of num_users in amir_deals
mean(amir_deals$num_users)

Poisson Distribution
a Poisson process is a process where events appear to happen at a certain rate 
but completely at random
examples

number of animals adopted from an animal shelter
number of people arriving at a restaurant per hour
number of earthquakes in Califorinia per year

Poisson distribution describes the probability of some number of events 
happening over a fixed period of time
Poisson is described by a value called lambda
lambda represents the average number of events per time interval
lambda also equates to the expected value of the distribution
*Poisson distribution is a discrete distribution since weʼre counting events 
lambda changes the shape of the distribution



*however no matter what the distributionʼs peak is always at its lambda value

using R, question - P(# adoptions in a week = 5) if average adoptions per week is 
8 (lambda)
dpois(5, lambda = 8)
output > 0.09 (approx 9% chance that there will be 5 adoptions in a week)

for value x or less we use the ppois function 
ppois(5, lambda = 8)
output > 0.19

for value x or greater we use the ppois function with lower.tail argument set to 
FALSE
ppois(5, lambda = 8, lower.tail = FALSE)

generate random samples from a Poisson distribution
rpois(10, lambda=8)

*Just like other distributions, the sampling distribution of sample means of a 
Poisson distribution looks normal with a large number of samples

Exponential distribution
probability of time between Poisson events
continuous distribution
represented by lambda also in this context referred to as ‘rateʼ
*rate affects the shape of the distribution and how steeply it declines 



Using R:
examples
P(wait < 1min) = pexp(1, rate = 0.5)
P(wait > 4min) = pexp(4, rate = 0.5, lower.tail = FALSE)
P(1min < wait < 4min) = pexp(4, rate = 0.5) - pexp(1, rate = 0.5)

*remember that lambda is the expected value of the Poisson distribution (in terms 
of rate)
lambda measures frequency in terms of rate or number of events
exponential distribution (in terms of time)
expected value of the exponential distribution can be calculated by taking 1 
divided by lambda

Studentʼs t-distribution or t-distribution



similar to the normal distribution 
the difference being that the t-distributionʼs tails are thicker 
*this means the in a t-distribution observations are more likely to fall further from 
the mean
*t-distribution has a parameter called degrees of freedom > which affects the 
thickness of the distributionʼs tails
lower df = thicker tails and higher standard deviation



Log-normal distribution

variable whose logarithm is normally distributed
*results in distributions that are skewed
real world examples > length of chess games, blood pressure in adults

Correlation
assessing the relationship between two variables
x = explanatory/independent variable 
y = response/dependent variable
correlation coefficient > quantifies the linear relationship between two variables
correlation coefficient is a number between -1 and 1
where the magnitude corresponds to the strength of the relationship between the 
variables
positive or negative corresponds to the direction of the relationship
coeff close to 0, x and y are considered to have no relationship and the scatterplot 
looks completely random
sign = direction 
*positive means as x increases, y increases
*negative means as x increases, y decreases

Visualizing and adding a trendline using R
ggplot(df, aes(x, y)) +

geom_point() +
geom_smooth(method = ‘lm,̓ se = FALSE)

#scatterplot is formed using geom_point
#trendline is formed using geom_smooth
#ʼlmʼ inidicates that we want a linear trendline
#ʼseʼ determines error margins 



Computing correlation using R
cor(df$x, df$y)
function takes in two numeric vectors 
*doesntʼ matter which order the vecotrs are passed into the function since the 
correlation between x and y is the same thing as the correlation between y and x
when calculating correlation, R will return missing values as NA
to ignore this need to set the ‘useʼ argument within the cor function to 
‘pairwise.complete.obsʼ
many ways to calculate correlation but most common way is Pearson (denoted as 
‘rʼ)
*essentially assessing the equality between the sample mean and the population 
mean
xbar = mean of x and ybar = mean of y

Example
# Add a linear trendline to scatterplot
ggplot(world_happiness, aes(life_exp, happiness_score)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)

# Correlation between life_exp and happiness_score
cor(world_happiness$life_exp, world_happiness$happiness_score)

Correlation caveats
non-linear relationships such as quadratic relationships
correlation coeff only measures the strength of linear relationships
when data is highly skewed we can apply log transformation
R example with a skewed dataset of mammal weight and mammal sleep
we go from this >



to this with a log transformation
msleep %>%

mutate(log_bodywt = log(bodywt)) %>%
ggplot(aes(log_bodywt, awake)) + 
geom_point() + 
geom_smooth(method = ‘lm,̓ se = FALSE)

Example
# Create log_gdp_per_cap column
world_happiness <- world_happiness %>%
  mutate(log_gdp_per_cap = log(gdp_per_cap))

# Scatterplot of happiness_score vs. log_gdp_per_cap
ggplot(world_happiness, aes(log_gdp_per_cap, happiness_score)) +
  geom_point()

# Calculate correlation
cor(world_happiness$log_gdp_per_cap, world_happiness$happiness_score)
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using the cor function prior to log transformation we get 0.3
after log transformation we get 0.57

Lots of transformations can be used to make a relationship more linear
log(x)
sqrt(x)
reciprocal 1/x

or combo of the above, such as:
log(x) and log(y)
or sqrt(x) and 1/y

Why use a transformation? > certain statistical methods rely on variables having a 
linear relationship
such as linear regression

**Always remember that correlation does mean causation
always be on the lookout for ‘spuriousʼ correlations 
example lung cancer and coffee drinking 
this is a phenomenon called confounding which leads to spurious correlations



Design of experiments
Experiments generally aim to answer a question in the form:
What is the effect of the treatment on the response?
where treatment is the explanatory/independent variable
where response is the response/dependent variable

Gold standard of experiments will use:
Randomized controlled trial > participants are assigned to treatment/control 
randomly and not based on any other characteristics
this ensures that groups are comparable
Use of a placebo > this resembles treatment but has no effect 
this ensures that participants will not know which group theyʼre in 
Double-blind > means that the person administering the experiment also doesnʼt 
know whether the treatment is real or a placebo
this helps prevent bials in the response and/or analysis of results

Observational studies
participants assign themselves (*usually based on pre-existing characteristics)
*with these studies you cannot establish causation 
here you can only establish association
effects can be confounded by factors that got certain people into the control or 
treatment group

Longitudinal studies
particpants are followed over a period of time to examine effect of treatment on 
response
this type of study helps eliminate confounders



this type of study is difficult and expensive

Cross-sectional studies
data on participants is collected from a single snapshot in time
confounders are always likely in these studies
easier and cheaper to perform


