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Monitoring Machine Learning in Python
by Hakim Elakhrass, Maciej Balawejder, and datacamp

Course focus on NannyML
NannyML offers an estimate of the modelʼs performance even when ground truth 
data is absent
NannyML is an open source Python library that handles detecting data drifts and 
smartly connects alerts to changes in model performance

Key features
performance estimation
find what is broken using univariate and multivariated drift detection along 
with monitoring data quality
helps you fix it (example by setting performance based retraining triggers)

First step
NannyML needs the reference (test) dataset and the analysis (production) dataset

Example using a census dataset built into the NannyML library
# Import nannyml
import nannyml

# Load US Census Employment dataset
reference, analysis, analysis_gt = nannyml.load_us_census_ma_employment_data()

# Print head of the reference data
print(reference.head())

# Print head of the analysis data
print(analysis.head())

Data preparation for NannyML
#create data partition for the green taxi dataset
#building an ML model that predicts the tip amount a passenger will leave
#prepared data by only using the fares attached to the credit card since this was 
the only way to know for certain on tip amounts
#also eliminated the data points in this column that were negative since they likely 
represented some type of error
data[‘partitionʼ] = pd.cut(

data[‘lpep_pickup_datetimeʼ],
bins = [pd.to_datetime(ʼ2016-12-01ʼ),



pd.to_datetime(‘2016-12-08ʼ),
pd.to_datetime(‘2016-12-16ʼ),
pd.to_datetime(‘2017-01-01ʼ)],

right=False,
labels= [‘train ,̓ ‘test ,̓ ‘prodʼ])

What we do next is split the data into training set, reference set, and analysis set
For our example we use week 1 to train, week 2 to test, and week 3-4 for 
production

for our example we will use the lightgbm library to train our dataset
LightGBM (light gradient boosting machine) is known for its efficiency in handling 
large datasets
which is a go-to solution for predictive modeling tasks 



Creating reference and analysis sets 
reference period > uses a test set, requires ground truth, this set serves as a 
baseline for every metric we wish to monitor
analysis period > the latest production data (after the reference period ends), 
ground truth is optional (NannyML can estimate)



Breaking down our reference set 

Model ouputs 
-predictions > prediction score outputted by the model
-prediction class labels > thresholded probability scores 
*for a classification task, there will be an extra column containing prediction class 
labels (ie thresholded probability scores)

Example:
# Load the dataset
dataset_name = "green_taxi_dataset.csv"
data = pd.read_csv(dataset_name)
features = ['lpep_pickup_datetime', 'PULocationID', 'DOLocationID', 'trip_distance', 
'fare_amount', 'pickup_time']



target = 'tip_amount'

# Split the training data
X_train = data.loc[data['partition'] == 'train', features]
y_train = data.loc[data['partition'] == 'train', target]

# Split the test data
X_test = data.loc[data['partition'] == 'test', features]
y_test = data.loc[data['partition'] == 'test', target]

# Split the prod data
X_prod = data.loc[data['partition'] == 'prod', features]
y_prod = data.loc[data['partition'] == 'prod', target]

# Fit the model
model = LGBMRegressor(random_state=111, n_estimators=50, n_jobs=1)
model.fit(X_train, y_train)

# Make predictions
y_pred_train = model.predict(X_train)
y_pred_test = model.predict(X_test)

# Deploy the model
y_pred_prod = model.predict(X_prod)

# Create reference and analysis set
reference = X_test.copy() # Test set features
reference['y_pred'] = y_pred_test # Predictions
reference['tip_amount'] = y_test # Labels(ground truth)
reference = reference.join(data['lpep_pickup_datetime']) # Timestamp

analysis = X_prod.copy() # Production features
analysis['y_pred'] = y_pred_prod # Predictions
analysis = analysis.join(data['lpep_pickup_datetime']) # Timestamp

Performance estimation
direct loss estimation (DLE) trains an extra ML model to estimate the value of the 
loss function
*this is the difference between the modelʼs predictions and the actual target 
values
NannyML uses the LGBM algorithm as the ‘extraʼ ML model

using Python



estimator = nannyml.DLE(
y_true = ‘target ,̓ #this is the ground truth
y_pred = ‘y_pred,̓ #this is your modelʼs predictions
metrics = [‘rmseʼ] #one of six available from nannyml
timestamp_column_name = ‘timestamp,̓ #need to specifiy the column 

containing the timestamps
chunk_period = ‘d ,̓ #d stands for daily performance evaluation
feature_column_names=features #features represents a list of column names 

representing the features used by the model
tune_hyperparameters=False) #default is false, can tune the external model if 

willing to use the computational power

NannyMLʼs algorithms operate similarly to scikit
“fit” it using the reference set and then estimate our metrics on the analysis set 
results are then stored in a NannyML results object
this can be converted to a pandas dataframe

Using Python
estimator.fit(reference)
results = estimator.estimate(analysis)

Using confidence based performance estimation (CBPE)
used for both binary and multiclass classification problems
works by using the confidence scores of the modelʼs predictions 
with these scores, CBPE estimates all the elements of the confusion matrix
we can then estimate various classification performance metrics such as accuracy, 
ROC AUC, F1 score, or precision

Using Python
estimator = nannyml.CBPE(

y_pred_proba = ‘y_pred_proba,̓ #this holds the predicted probabilities 
y_pred = ‘y_pred,̓ #this holds the modelʼs predicted classes
y_true = ‘targets ,̓ #ground truth
timestamp_column_name = ‘timestamp.̓, 
metrics = [‘roc_aucʼ], 
chunk_period = ‘d ,̓ 
problem_type = ‘classification_binaryʼ) #this indicates whether we have a 

binary or multiclass classification problem

estimator.fit(reference)
results = estimator.estimate(analysis)

Visualizing results



results.plot().show()
example output>

Estimated vs realized performance
estimated > measures how well model is expected to perform
determined using estimators (algorithms for performance estimation) > like CBPE 
and DLE
*estimated when ground truth is not available
realized > represents measured performance 
determined using performance calculators (algorithms)
*calculated when ground truth is available

Using NannyMLʼs performance calculator - similar to estimator
calculator = nannyml.PerformanceCalculator(

y_pred_proba = ‘y_pred_proba,̓ #this holds the predicted probabilities 
y_pred = ‘y_pred,̓ #this holds the modelʼs predicted classes
y_true = ‘targets ,̓ #ground truth
timestamp_column_name = ‘timestamp.̓, 
metrics = [‘roc_auc,̓ ‘accuracyʼ], 
chunk_period = ‘d ,̓ 
problem_type = ‘classification_binaryʼ) #this indicates whether we have a 

binary or multiclass classification problem



#fit the calculator
calc.fit(reference)
realized_results = calc.calculate(analysis)
#**analysis set neeed to include a column with ground truth
results.plot().show()
example output>

Comparing realized and estimated performance
must run the performance estimator and calculator beforehand
using Python:
estimated_results = estimator.estimate(analysis)
realized_results = calculator.calculate(analysis)
#show comparison plot
realized_results.compare(estimated_results).plot().show()
example output>

*in this example the CBPE used is mimicking the modelʼs actual behavior very well
*if the predictions are far off, it might indicate that concept drift is present in the 
data 

Example



# Intialize the calculator
calculator = nannyml.PerformanceCalculator(
    y_true='tip_amount',
    y_pred='y_pred',
    chunk_period='d',
    metrics=['mae'],
    timestamp_column_name='lpep_pickup_datetime',
    problem_type='regression')

# Fit the calculator
calculator.fit(reference)
realized_results = calculator.calculate(analysis)

# Show comparison plot for realized and estimated performance
realized_results.compare(estimated_results).plot().show()

How to chunk the data?
time-based, size-based, or number-based
‘chunkʼ represents aggregated results for a specific number of observations or a 
time interval > displayed as a single point on the monitoring plot
size-based > ensures a fixed number of data points per chunk
number-based > specify the total number of chunks we want, ensuring a fixed 
number of observations per chunk

Initializing custom thresholds
NannyML calculates the mean and standard deviation of the reference data
to compute the lower threshold, it subtracts three standard deviations from the 
mean
for upper, it adds three standard deviations to the mean
*with NannyML we can also customize this calculation
with Python:
from nannyml.thresholds import ConstantThreshold, StandardDeviationThreshold
stdt = StandardDeviationThreshold(

std_lower_multiplier=3,
std_upper_multiplier=3)

Can also set constant lower and upper thresholds
ct = ConstantThreshold(

lower = 0.85,
upper = 0.95)

*need to pass custom thresholds as a dictionary
with Python:



thresholds={‘roc_aucʼ :̓ ct, ‘accuracy :̓ stdt} 

Filtering results
by period >
filtered_results = results.filter(period=‘analysisʼ)
by metrics >
filtered_results = results.filter(metrics=[‘maeʼ])
by both
filtered_results = results.filter(period=‘analysis ,̓ metrics=[‘maeʼ])

We can then export our results to a dataframe
results.filter(period=‘analysisʼ).to_df()
example output>

Example
reference, analysis, analysis_gt = nannyml.load_us_census_ma_employment_data()

# Initialize the CBPE algorithm
cbpe = nannyml.CBPE(
    y_pred_proba='predicted_probability',
    y_pred='prediction',
    y_true='employed',
    metrics = ['roc_auc', 'accuracy', 'f1'],
    problem_type = 'classification_binary',
    chunk_number = 8,
)

cbpe = cbpe.fit(reference)
estimated_results = cbpe.estimate(analysis)
estimated_results.plot().show()

Example
# Import custom thresholds
from nannyml.thresholds import ConstantThreshold, StandardDeviationThreshold

# Initialize custom thresholds
stdt = StandardDeviationThreshold(std_lower_multiplier = 2, std_upper_multiplier = 



2)
ct = ConstantThreshold(lower = 0.9, upper = 0.98)

# Initialize the CBPE algorithm
estimator = nannyml.CBPE(
    problem_type='classification_binary',
    y_pred_proba='predicted_probability',
    y_pred='prediction',
    y_true='employed',
    metrics=['roc_auc', 'accuracy', 'f1'], 
    thresholds={'f1': ct, 'accuracy': stdt})

# Convert estimated results to a dataframe for the roc_auc metric
display(estimated_results.filter(metrics=['roc_auc']).to_df())

# Convert estimated results to a dataframe for the reference period
display(estimated_results.filter(period='reference', metrics=['f1', 
'accuracy']).to_df())

# Show the results plot for the accuracy metric
display(estimated_results.filter(metrics=['accuracy']).plot().show())

# Show the results plot for the analysis set, as well as the accuracy and roc_auc 
metrics
display(estimated_results.filter(period='analysis', metrics=['accuracy', 
'roc_auc']).plot().show())

Business value
NannyML modelʼs predictions can be organized into a confusion matrix
example hotel bookings:



Here we can use NannyMLʼs ‘business valueʼ metric > which weighs the up and 
down side of TP, FN, FP, and TN

parameter normalize_business_value can be either ‘Noneʼ or ‘per_predictionʼ
determines whether the results are shown for the entire chunk or each prediction
*we use ‘per_predictionʼ when info (this case booking cancellations) are not 
available 

Example
# Custom business value thresholds
ct = ConstantThreshold(lower=0, upper=150000)
# Intialize the performance calculator
calc = PerformanceCalculator(problem_type='classification_binary',
            y_pred_proba='y_pred_proba',
            timestamp_column_name="timestamp",      
            y_pred='y_pred',
            y_true='is_canceled',
            chunk_period='m',
            metrics=['business_value', 'roc_auc'],
            business_value_matrix = [[0, -100],[-200, 1500]],
            thresholds={'business_value': ct})
calc = calc.fit(reference)
calc_res = calc.calculate(analysis)
calc_res.filter(period='analysis').plot().show()

Multivariate drift detection > first step of RCA



How multivariate drift detection works?
we use the PCA algorithm to compress the data > giving us latent space data
then we decompress the data with an inverse PCA algorithm
*then we measure the reconstruction error > increase indicates data drift
NannyML calculates this error for each chunk and raises an alert when the values 
get outside of the thresholds defined in the reference period
with Python:
mv_calc = nannyml.DataReconstructionDriftCalculator(…
#fit
mycalc.fit(reference)
mv_results = mv_calc.calculate(analysis)
figure = mv_results.filter(period=‘analysisʼ).compare(perf_results).plot()
figure.show()
example comparison graph>



Example
# Create standard deviation thresholds
stdt = StandardDeviationThreshold(std_lower_multiplier=2, std_upper_multiplier=1)

# Define feature columns
feature_column_names = ['country', 'lead_time', 'parking_spaces', 'hotel']

# Intialize, fit, and show results of multivariate drift calculator
mv_calc = nannyml.DataReconstructionDriftCalculator(
    column_names=feature_column_names,
    threshold = stdt,
    timestamp_column_name='timestamp',
    chunk_period='m')
mv_calc.fit(reference)
mv_results = mv_calc.calculate(analysis)
mv_results.filter(period='analysis').compare(perf_results).plot().show()

Univariate drift detection
*method used after the multivariate one
look at each feature individually to determine why and if it is drifting
result is a single number which represents the amount of drift between the 
reference and analysis chunk
NannyML supports six methods:



Using Python:

we are able to filter by column names and methods
filtered_figure = uv_results.filter(column_names=[‘trip_distance,̓ ‘fare_amountʼ], 

methods=[‘jensen_shannonʼ])
filtered_figure.show().plot()
**if too many features we can NannyMLʼs ranker

Two rankers
Alert counting > rank features based on the number of alerts



Considering that many alerts may be false, we can use the correlation ranker to 
validate them
Correlation ranker > ranks features based on how much they correlate to absolute 
changes in performance

NannyML can track how the feature distributions evolve in each chunk
this can significantly improve our understanding of drift and its connection to 
performance
To use:
#create distribution plots



distribution_results = uv_results.plot(kind=‘distributionʼ)
distribution_results.show()
example outputs>

Example
# Initialize the alert count ranker
alert_count_ranker = nannyml.AlertCountRanker()
alert_count_ranked_features = alert_count_ranker.rank(
    uv_results.filter(methods=['wasserstein', 'l_infinity']))

display(alert_count_ranked_features)

# Initialize the correlation ranker
correlation_ranker = nannyml.CorrelationRanker()
correlation_ranker.fit(perf_results.filter(period='reference'))

correlation_ranked_features = correlation_ranker.rank(
    uv_results.filter(methods=['wasserstein', 'l_infinity']),
    perf_results.filter(methods=['wasserstein', 'l_infinity']))
display(correlation_ranked_features)

# Filter and create drift plots
drift_results = uv_results.filter(
    period='analysis',
    column_names=['hotel', 'country']
    ).plot(kind='drift')

# Filter and create distribution plots
distribution_results = uv_results.filter(
    period='analysis',
    column_names=['hotel', 'country']
    ).plot(kind='distribution')

# Show the plots



drift_results.show()
distribution_results.show()

output>

Data quality and statistic checks
-missing value detection
-unseen value detection
monitor row count for each chunk > if too low, it might not be enough data to 
calculate univariate or multivariate results

Missing values detection

set normalize parameter to True if you want to see the ratio of missing values

Unseen values detection 
categorical feature values that are not present in the reference period



Data quality check with summary statistics

Example
# Define analyzed columns
selected_columns = ['country', 'lead_time', 'parking_spaces', 'hotel']

# Intialize missing values calculator
ms_calc = nannyml.MissingValuesCalculator(
    column_names=selected_columns,
    chunk_period='m',
    timestamp_column_name='timestamp'
)

# Fit, calculate and plot the results
ms_calc.fit(reference)
ms_results = ms_calc.calculate(analysis)
ms_results.plot().show()

# Define analyzed column
analyzed_column = ['lead_time']
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# Intialize median values calculator
med_calc = nannyml.SummaryStatsMedianCalculator(
    column_names=analyzed_column, 
    chunk_period='m', 
    timestamp_column_name='timestamp'
)

# Fit, calculate and plot the results
med_calc.fit(reference)
med_calc_res = med_calc.calculate(analysis)
med_calc_res.filter(period='analysis').plot().show()

Issue resolution
do nothing
retrain

on both old and new data
fine-tune the old model with the new data
weighting data > give more importance to the recent data if the new data 
is more relevant to the business problem

revert back to a previous model
go downstream of the model and business process (ie having a branch 
manager use experience to order weekly toilet paper need if model is 
underperforming




