
Python Data Science Toolbox
by datacamp

Built-in functions
str()
example
x = str(5)
print(x)
output 5

Defining a function
def square(): #function header

new_value = 4 ** 2 #function body
print(new_value)

Function parameters
** add parameter within the parentheses
def square(value):

new_value = value ** 2
print(new_value)

square(4)
output 16
square(5)
output(25)
** can now put in any value
** when you define a function, you write parameters in the function header
** when you call a function, you pass arguments into the function
To return and assign variable instead of printing it you can use the keyword return
def square(value):

new_value = value ** 2
return new_value

**we can assign the variable;
for this example we use num
num = square(4)
print(num)
***returning values is generally more desirable than printing because print() call
assigned to a variable has data type NoneType

Docstrings
describe what your function does
serve as documentation for your function

placed in the immediate line after the function header
**must be placed between triple quotes “””

Multiple function parameters
example
def raise_to_power(value1, value2):

“””Raise the value1 to the power of value2”””
new_value = value1 ** value2
return new_value

**to call function > #of arguments needs to be = to #of parameters
example with above function
result = raise_to_power(2,3)
print(result)
output 8

Can make function return multiple values in the form of tuples
Tuples are:

- like a list in that they can contain multiple values
- unlike lists, they are immutable (ie unchangeable, cannot be modified) once

they have been constructed
- are constructed using parentheses () instead of brackets like lists

Can unpack tuples
What this means:
example
even_nums = (2,4,6) #our tuple
#now assign/unpack tuple to its own variables
a,b,c = even_nums
print(a) > output 2
print(b) > output 4
print(c) > output 6

Can access tuples like you access lists
Indexing
example
even_nuns = (2, 4, 6)
print(even_nums[1] > output 4

Returning multiple values
example
def raise_both(value1, value2):

“””Raise value1 to the power of value2 and vice versa”””

–
–
–

–
–

–
–
–

new_value1 = value1 ** value2
new_value2 = value2 ** value1
new_tuple = (new_value1, new_value2)
return new_tuple

result = raise_both(2, 3)
print(result) > (8, 9)

Example
Import pandas
import pandas as pd

Import Twitter data as DataFrame: df
df = pd.read_csv('tweets.csv')

Initialize an empty dictionary: langs_count
langs_count = {}

Extract column from DataFrame: col
col = df['lang']

Iterate over lang column in DataFrame
for entry in col:

 # If the language is in langs_count, add 1
 if entry in langs_count.keys():
 langs_count[entry] += 1
 # Else add the language to langs_count, set the value to 1
 else:
 langs_count[entry] = 1

Print the populated dictionary
print(langs_count)

Crash course on scope in functions
not all objects are accessible everywhere in a script
scope is part of the program where an object or name may be accessible
Names refer to the variables or more generally objects such as functions that
are defined in your program
example variable x has a name as does the function sum
Three types of scope:

1. Global scope - defined in the main body of a script
2. Local scope - defined inside a function
**once the execution of a function is done, any name inside the local

–

–
–

scope ceases to exist, which means that you cannot access those names
anymore outside of the function definition
3. Built-in scope - names in the pre-defined built-in module

**when we reference a name, first the local scope is searched, then the global,
if the name is in neither, then the built-in scope is searched

To alter the value of a global name within a function call
example
new_val = 10
def square(value):

global new_val
new_val = new_val ** 2
return new_val

we can do this with the keyword global
we use it within the body of the function to state that we wish to alter and the
variable to alter

Nested functions
example structure
def outer(..):

x = …
def inner(…):

y = x ** 2
return …

Python searches the local scope of the function inner, if it doesnʼt find x, it
searches the scope of the function outer
**the outer function is also called an enclosing function
if Python canʼt find x in the function outer then it searches global and then looks
into built-in modules
why nested functions?:
example we want a function that takes 3 parameters and performs the same
function on each of them
example
def mod2plus5(x1, x2, x3):

def inner(x):
return x % + 5

return (inner(x1), inner(x2), inner(x3))
print(mod2plus5(1, 2, 3))

Another example
Returning functions
def raise_val(n):

“””Return the inner function.”””

def inner(x):
“””Raise x to the power of n.”””

raised = x ** n
return raised

return inner
square = raise_val(2)
cube = raise_val(3)
print(square(2), cube(4))

like the keyword global that we used to change the global scope
we can use the keyword nonlocal to make changes in the enclosing scope
example
def outer():

‘ʼʼʼPrints the value of n.̓ ʼʼʼ
n = 1
def inner():

nonlocal n
n = 2
print(n)

inner()
print(n)

outer() > output 2 2

**ʼClosureʼ means that the nested or inner function remembers the state of its
enclosing scope when called.
**meaning that what is defined locally in the enclosing scope is available to the
inner function even when the outer function has finished execution.

Add a default argument
#pow is second argument; we put it to =1 which means if we donʼt call a 2nd
argument it will automatically call 1
def power(number, pow=1):

“””Raise number to the power of pow.”””
new_value = number ** pow
return new_value

power(9,2)
#in this case we put in a 2nd argument 2 so it will run with 2
#if we put power(9), the 2nd argument will run as the default 1

Flexible arguments: *args(1)
for when you want to write a function but arenʼt sure how many arguments a user
will want to pass
example a function that takes floats or ints and adds them all up, irrespective of

how many there are
below example is of a function that sums up all the arguments passed to it
*args turns all the arguments passed to a function call into a tuple called args in
the function body
then use our desired function in the function body and loop over the tuple args
and add each element of it successively
def add_all(*args):

“””Sum all values in *args together.”””
#Initialize sum
sum_all = 0
#accumulate the sum
for num in args:

sum_all += num
return sum_all

add_all(5, 10, 15)
output 30
**can put any input into add_all

Flexible arguments: **kwargs
** allows you to pass an arbitrary number of keyword arguments
ie arguments preceded by identifiers
turns the identifier-keyword pairs into a dictionary within the function body
example
def print_all(**kwargs):

“””Print out key-value pairs in **kwargs.”””
#Print out the key-value pairs
for key, value in kwargs.items():

print(key + ‘: “ + value)
print_all(name=‘dumbledore,̓ job=‘headmasterʼ
output > job: headmaster name: dumbledore

Lambda functions
raise_to_power = lambda x, y: x ** y
raise_to_power(2,3)
output 8
example of a good time to use is with map functions
function map takes two arguments: map(func, seq)
map() applies the function to ALL elements in the sequence
map function is a type of anonymous function meaning we can pass lambda
functions to map without even naming them
example
nums = [48, 6, 9 ,21, 1]
square_all = map(lambda num: num ** 2, nums

print(square_all)
**output will state that it is a map object
**to see our outputs we need to print it out as a list
print(list(square_all))

Errors and exceptions
def sqrt(x):

try:
return x ** 0.5

except:
print(‘x must be an int or floatʼ)

** this makes clearer type error messages for users
sometimes you will actually want to raise an error
example for the squareroot of a negative number, we may prefer an error message
over a complex number
example
def sqrt(x):

if x < 0:
raise ValueError(‘x must be non-negativeʼ)

try:
return x ** 0.5

except TypeError:
print(‘x must be an int or floatʼ)

Iterators vs. Iterables
Iterator example - for loop
iterate over a range object using a loop (ie characters in a string or a sequence of
numbers)
produces next value with next()
example
for i in range(4):

print(i)

Iterable examples - lists, strings, dictionaries, file connections
official definition - an object with an associated iter() method
**applying iter() to an utterable creates an iterator
what a for loop is doing:
it takes an iterable, creates the associated iterator object, and iterates over it

iter() will continue to call until there are no values left to return and then will throw
a StopIteration error
Can call all values in one output by using a star (unpacks all elements)
example

word = ‘Dataʼ
it = iter(word)
print(*it)
output D a t a instead of
D
a
t
a
without star

Iterating over dictionaries need to use items method
pythonistas = {‘hugo :̓ ‘bone-anderson,̓ ‘francis :̓ ‘castroʼ}
for key, value in pythonistas.items():

print(key, value)

Iterating over file connections
file = open(‘file.txtʼ)
it = iter(file)
print(next(it))

Playing with iterators
enumerate()
allows us to add a counter to any iterable
a function that takes any iterable as argument and returns a special enumerate
object, which consists of pairs containing the elements of the original iterable,
along with their index within the iterable
we can then use the function lis to turn this enumerate object into a list of tuples
and print it to see what it contains
example
avengers = [‘hawkeye,̓ ‘iron man,̓ ‘thor ,̓ ‘quicksilverʼ]
e = enumerate(avengers)
print(type(e))
output class enumerate
e_list = list(e)
print(e_list)
output [(0, ‘hawkeyeʼ), (1, ‘iron manʼ), (2, ‘thorʼ), (3, ‘quicksilver)]

**Can enumerate and unpack at same time
avengers = [see above]
for index, value in enumerate(avengers):

print(index, value)
output
0 hawkeye

1 iron man
2 thor
3 quicksilver
**can use argument ‘startʼ to start index at any point; default is 0

zip()
allows us to stitch together an arbitrary number of iterables and returns an iterator
of tuples
example can zip two lists together
example
avengers = [see above]
names = [‘barton,̓ ‘stark ,̓ ‘odinson,̓ ‘maxim offʼ]
z = zip(avengers, names)
print(type(z))
output class zip
z_list = list(z)
print(z_list)
output
[(‘hawkeye,̓ ‘bartonʼ), (‘iron man,̓ ‘starkʼ), (‘thor ,̓ ‘odin soʼ), (‘quicksilver ,̓ ‘maxim
offʼ)]

zip and unpack at same time
avengers = [see above]
names = [see above]
for z1, z2, in zip(avengers, names):

print(z1, z2)
output
hawkeye barton
iron man stark
thor odinson
quicksilver maxim off

**can also use the ‘splatʼ (ie star) operator to print all the elements

Loading data in chunks
when there is too much data to hold in memory
load data in chunks, run operation, get solution, store solution, discard chunk, and
repeat
example - collecting sum
result = []
for chunk in pd.read_csv(‘data.csv,̓ chunksize=1000):

result.append(sum(chunk[‘xʼ]))
total = sum(result)

print(total)
another way of doing this
total = 0
for chunk in pd.read_csv(‘data.csv,̓ chunk size=1000):

total += sum(chunk[‘xʼ])
print(total)

List comprehensions
an elegant way to define and create lists based on existing lists
example
nums = [12, 8, 21, 3, 16]
new_nums = [num + 1 for num in nums]
print(new_nums)
output [13, 9, 22, 4, 17]

**can write a list comprehension over any iterable
list comprehensions collapse ‘forʼ loops for building lists into a single line
required components are:

- iterator
- iterator variable (represent members of iterable)
- output expression

Nested loop example
pairs_1 = []
for num1 in range(0,2):

for num2 in range(6,8):
pairs_1.append((num1, num2))

print(pairs_1)
output [(0,6), (0,7), (1,6), 1,7)]
** how to do this with list comprehensions
pairs_2 =- [(num1, num2) for num1 in range(0,2) for num2 in range(6,8)]

example of conditionals on the iterable
[num **2 for num in range(10) if num % 2 == 0)
side note/reminder modulo (%) operator yields the remainder from the division of
the first argument by the second

example of conditionals on the output expression
[num ** 2 if num % 2 == 0 else 0 for num in range(10)]

[output expression for iterator variable in iterable if predicate expression]

Dictionary or dict comprehensions

example
pos_neg = {num: -num for num in range(9)}

Generators
returns a generator object
same format as list comprehension except with () instead of []
main difference is that generators do not store the list in memory
it does not construct the list but instead keeps it as an object
this object can be iterated over to produce elements of the list as required
why use generators
good for large data sets, efficient iteration, infinite sequences, lazy evaluation (ie
values are generated on-demand), and for pipelining and data processing (ie each
step operates on one item at a time, improving code readability and reducing
memory overhead)
**generators offer a memory-efficient and flexible way to generate sequences of
values when dealing with large data sets, infinite sequences, or when you want to
optimize performance by avoiding unnecessary memory allocations
** use yield in place of return
generator function example
def num_sequence(n):

“””Generate values from 0 to n.”””
i = 0
while i < n

yield i
i += 1

Re-cap
List comprehension
Basic:
[output expression for iterator variable in iterable]
Advanced:
[output expression + conditional on output for iterator variable in iterable +
conditional on iterable]

zip() accepts an arbitrary number of iterables and returns an iterator of tuples

defining a function
function header begins with def followed by function name with arguments inside
parentheses followed by a colon
function body performs the computation that the function does and closes with
the keyword return, followed by the value or values to return

Readline() method is used to read a single line from a file

Used in generators
Best used with text files
keeps track of current position in the file
returns line as a string
returns an empty string (‘ʼ) when reaches the end

