
Supervised learning with scikit-learn
by datacamp

Unsupervised learning
-uncovering hidden patterns from unlabeled data
-clustering is one branch of unsupervised learning

Supervised learning
-values to be predicted are already known
-model is built with aim of accurately predicting values of previously unseen data
-learns from a labeled dataset where the input data is accompanied by 
corresponding outputs (ie target labels)
-the model attempts to learn a mapping between the input features and target 
labels, so later it can make predictions on unseen data

Types of supervised learning
-classification > target variable consists of categories
-example a binary classification (fraudulent or non-fraudulent
-regression > target variable is continuous 
-used to predict continuous values
-example prediciting price of property using features like size and/or number of 
bedrooms

Naming conventions
feature = predictor variable = independent variable
target variable = dependent variable = response variable

Before you use supervised learning
requirements:
-no missing values
-data in numeric format
-data stored in pandas DF or NumPy array
*this all requires exploratory data analysis (EDA) first

scikit-learn syntax
#import ‘Modelʼ which is a type of algorithm for our supervised learning problem
#example model, k-Nearest Neighbors model uses distance between obsevations 
to predict labels or values
from sklearn.module import Model
#create a variable, here we will name it ‘modelʼ
#instantiate the Model
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#instantiate means creating a model from a predefined blueprint or template
#also referred to as creating an object or an instance
#in this case we are creating a specific machine learning model class
model = Model()
#fit the model
model.fit(X, y)
#X is an array of our features
#y is an arrary of our target labels
#here we will use ‘X_newʼ an example array of six elements
predictions = model.predict(X_new)
print(predictions)
output > array([0, 0, 0, 0, 1, 0]) #example could be an email spam classifier > this 
would be saying element 5 (index 4) is spam

How to build a classification model (also called a classifier) to predict the labels of 
unseen data
Four steps:

build a model
model learns from the labeled data we pass to it
pass unlabeled data to the model as input
model predicts the labels of the unseen data

*as the classifier leanrs from the labeled data, we call this the training data 
labeled data = training data

k-Nearest Neighbors (KNN)
“lazy learner” algorithm
popular for classification problems
predicts label of a data point by majority voting 
makes prediction based on what label the majority of nearest neighbors have 
k is a pre-determined value
too small can lead to noisy predictions
too large and can smooth out decision boundaries and result in biased predictions
k represents the amount of voting neighbors when making a prediction on an 
unseen new data point
example if set k=3
then a new data point is classified by the Euclidean distance of its three nearest 
neighbors
new point takes on the label of the majority of nearest neighbors have
mostly used for classification but can be used for regression if algorithm takes the 
weighted average of the target values

KNN example - customer churn eval between day charge vs night charge 
customers



from sklearn.neighbors import KNeighborsClassifier
#split data into X, 2D array of our features and y, 1D array of our target values
X = churn_df[[ʼtotal_day_charge,̓ ʼtotal_eve_chargeʼ]].values
y = churn_df[‘churnʼ].values #churn Series perfect for binary classification, values 
already of 0 and 1
*scikit-learn requires that the features are in an array where each column is a 
feature and each row is an observation
*similarly the target needs to be a single column with the same number of 
observations as the feature data
*using the .values attribute converts both X and y into NumPy arrays
good practice to print the shapes of X and y to ensure same size
print(X.shape, y.shape)
#instantiate our KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=15)
#fit the model
#ʼfittingʼ is training the model of the labeled data
knn.fit(X,y)
predctions = knn.predict(X_new)
print(‘Predictions: {} .̓format(predictions))

Measuring model performance
*in classification, accuracy is a commonly used metric
accuracy = correct predictions / total observations
measuring accuracy on the labeled data will not be indicative of the models skill 
on unseen data
best practice > split data into a training and test set
fit classifier on training set
then calculate accuracy using test set

example
from sklearn.model_selection import train_test_split
#common to use 20-30% of data as test set
#0.3 is 30% for our example
**best practice to ensure our split reflects the proportion of labels in our data
**what this mean > if churn occurs in 10% of observations, then we want 10% of 
labels in our training and test sets to churn
#achieve this by using the ‘stratifyʼ argument and setting it equal to y
#test_train_split returns four arrays > training data, test data, training labels, and 
test labels > set as X_train, X_test, y_train, y_test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=21, stratify=y)
#instantiate a KNN model
knn = KNeighborsClassifier(n_neighbors=6)



#train model 
knn.fit(X_train, y_train)
#check accuracy > do this with the .score() method passing the X_test and y_test 
arguments
print(knn.score(X_test, y_test))

Can also interpret k using a model complexity curve
with a KNN model, we can calculate accuracy on the training and test sets using 
incremental k values
create empty dictionaries to store our train and test accuracies
train_accuracies = {}
test_accuracies = {}
create an array containing the range of k values
neighbors = np.arange(1, 26)
use a for loop to repeat our previous workflow
building several models using a different number of neighbors
for neighbor in neighbors:
loop through our neighbors array
inside the loop, instantiate a KNN model with n_neighbors equal to the neighbor 
iterator 

knn = KNeighborsClassifier(n_neighbors=neighbor)
fit to the training data

knn.fit(X_train, y_train)
calculate training and test set accuracy 
then store in their respective dictionaries 



train_accuracies[neighbor] = knn.score(X_train, y_train)
test_accuracies[neighbor] = knn.score(X_test, y_test)

then plot our results
plt.figure(figsize=(8, 6))
plt.title(‘KNN: Varying Number of Neighborsʼ)
plt.plot(neighbors, train_accuracies.values(), label=‘Training Accuracyʼ)
plt.plot(neighbors, test_accuracies.values(), label=‘Testing Accuracyʼ)
plt.legend()
plt.xlabel(ʼNumber of Neighborsʼ)
plt.ylabel(‘Accuracyʼ)
plt.show()

Introduction to regression
target variable has continuous values

Example - womenʼs health data to predict blood glucose levels
*dataset > Series diabetes status [0 for no, 1 for yes]
create feature and target arrays
**use all the features in the dataset except our target (‘blood glucose levelsʼ)
X = diabetes_df.drop(‘glucose,̓ axis=1).values
for y take the target columnʼs values attribute
y = diabetes_df[‘glucoseʼ].values
confirm X and y are NumPy arrays
print(type(X), type(y))

Same example - Attempt to make prediction from one feature (BMI)
slice out BMI column
X_bmi == X[:, 3]
check shapes of y and X_bmi
print(y.shape, X_bmi.shape)
output > shows that both shapes are 1D arrays
**this is ok for y, but X must be a 2D array
change X to a 2D array
***sidebar - Why does X need to be a 2D array?
In supervised learning models, the input features (often denoted as X) are typically 
represented as a 2D array (also known as a matrix) because it allows for the 
efficient handling of multiple data points and their corresponding feature values. 
There are several reasons why X is represented as a 2D array:

1. **Multiple Data Points:**
   In supervised learning, you typically have multiple data points (samples) in your 
dataset. Each data point consists of a set of features (attributes) that represent 
the input to the model. A 2D array allows you to organize and represent these 



multiple data points efficiently.

2. **Consistent Data Structure:**
   Representing X as a 2D array ensures a consistent data structure, where each 
row corresponds to a single data point, and each column represents a specific 
feature. This makes it easier to perform operations and computations on the entire 
dataset.

3. **Vectorized Operations:**
   Many machine learning algorithms are optimized to perform vectorized 
operations, which can be efficiently executed on 2D arrays. Vectorized operations 
allow the model to process multiple data points simultaneously, leading to faster 
computations and better performance.

4. **Integration with Libraries:**
   Popular machine learning libraries, such as NumPy, scikit-learn, and TensorFlow, 
are designed to work with 2D arrays. These libraries provide numerous built-in 
functions and methods that operate on 2D arrays, making it easier to implement 
and train supervised learning models.

5. **Input Requirements for Models:**
   Many supervised learning models, such as linear regression, decision trees, and 
neural networks, expect the input features to be represented as a 2D array. This 
format allows the models to access and process individual features for each data 
point during training and prediction.

6. **Multivariate Features:**
   Often, the input features (X) in supervised learning are multivariate, meaning 
each data point consists of multiple feature values. Representing X as a 2D array 
allows you to handle these multivariate features in a structured manner.

While representing X as a 2D array is common in many supervised learning 
scenarios, it is worth noting that some algorithms or models may have specific 
requirements regarding the input data shape. For example, time series data may 
require a different structure (e.g., 3D array) to capture the temporal 
dependencies.

In summary, representing X as a 2D array in supervised learning provides an 
efficient and consistent way to organize and process the input features for 
multiple data points, making it easier to implement and train various machine 
learning models.

**Return to example



changing X_bmi from 1D array to 2D array
X_bmi = X_bmi.reshape(-1, 1)
now plot
plt.scatter(X_bmi, y)
plt.ylabel(‘Blood Glucose (mg/dl)ʼ)
plt.xlabel(‘Body Mass Indexʼ)
plt.show()

generally shows us that as bmi increases blood glucose levels also tend to 
increase
now fit a regression model to our data
weʼll use linear regression which fits a straight line to our data
from sklearn.linear_model import LinearRegression
#instantiate our regression model
reg = LinearRegression()
**since we are modeling the relationship between bmi and glucose rather than 
predicting target values for new observations,
we fit the model to all of our feature observations
*just as we did for our classification problem
reg.fit(X_bmi, y)
predictions = reg.predict(X_bmi)
plt.scatter(X_bmi, y)
plt.plot(X_bmi, predictions)
plt.ylabel(‘Blood Glucose (mg/dL)ʼ)



plt.xlabel(‘Body Mass Indexʼ)
plt.show()

How does linear regression work?
Regression mechanics
the concept is to fit a line to the data
in 2 dimensions this takes the form of y = ax + b
in simple linear regression (ie using only one feature)
y = target
x = single feature
a, b = parameters/coefficients of the model
a and b are the model parameters that we want to learn
a and b are also called the model coefficients
a is also called the slope
y is also called the intercept

How do we choose a and b?
We can define an error function for any given line and then choose the line that 
minimizes this function
Error function has many names
error function = loss function = cost function



Loss function
goal is to have line as close to the observations as possible
ie minimize the vertical distance between the fit and the data 
to do this we calculate the vertical distance between each observation and the line
this distance is called the residual
goal is to minimize the sum of the residuals
on initial glance this is not possible because the positive and negative residuals 
would cancel each other out
we get around this by squaring all residuals and in turn eliminating all negatives
adding all the squared residuals, we calculate the residual sum of squares (RSS)
this type of linear regression is called ordinary least squares (OLS)
aim is to minimize the RSS

Linear regression in higher dimensions
two features and one target takes this form 
y = a1x1 + a2x2 + b
to fit a linear regression model we specify three variables a1, a2, and b (the 
intercept)
adding more features is known as multiple linear regressions
fittin a multiple linear regression model means specifying a coefficient (a) for each 
of the features
for multiple linear regression, scikit expects one variable for each feature and one 
for target values (need to pass two arrays)
y = a1x1 + a2x2 + a3x3 + … + anxn + b

Example - predict blood glucose levels using all of the features from the dataset
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=42)
reg_all = LinearRegression()
reg_all.fit(X_train, y_train)
y_pred = reg_all.predict(X_test)
**note the scikit linear regression model performs OLS under the hood

R-squared
default metric of linear regression
quantifies the amount of variance in the target variable that is explained by the 



features 
values range from 0 to 1
1 meaning the features completely explain the targetʼs variance

to compute R-squared
reg_all.score(X_test, y_test)

Mean squared error and root mean squared error
another way to assess a regression modelʼs performance is to take the mean of 
the residual sum of squares
measured in target value units squared

we use RMSE to measure in the same units as the target value

from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, y_pred, squared=False)
ʼsquaredʼ argument to False, returns the square root of the MSE

Cross-validation motivation
R-squared returned is dependent on the way that we split up the data
test set since random may not be representative of the modelʼs ability to 
generalize to unseen data
to combat this dependence on what is essentially a random split, we use a 
technique called cross-validation

Cross-validation basics
split data into 5 groups called ‘foldsʼ and label them fold 1, fold 2, ….



set fold 1 as test set and fit our model on the remaining four folds, predict on our 
test set
then compute metric of interest (like R-squared)
**repeat process on each fold group
at the end weʼll have 5 values of interest (ie 5 R-squareds)

**can use any desired amount of folds 
5 folds = 5-fold CV
10 folds = 10-fold CV
k folds = k-fold CV
*however always a trade-off > more folds = higher computational expense 
(because we are fitting/predicting multiple times)

from sklearn.model_selection import cross_val_score, KFold
KFold allows us to set a seed and shuffle our data, making our results repeatable 
downstream
kf = KFold(n_splits=6, shuffle=True, random_state=42)
ʼn_splitsʼ argument default is 5, for our example weʼve chosen 6
will give us six folds 
‘shuffleʼ argument set to True will shuffle our dataset before splitting into folds
instantiate the model
reg = LinearRegression()
cv_results = cross_val_score(reg, X, y, cv=kf)
*the first three positional arguments (the model, the feature data, the target data)
need to specify folds here as well 
we did this in kf, so here we set cv=kf
**length of the array is the number of folds utilized
default score for linear regression is R-squared
print(cv_results)
output > 6 r-squares
can then run summary statistics on this array
print(np.mean(cv_results), np.std(cv_results))
calculate CI interval as well 
print(np.quantile(cv_results, [0.025, 0.975]))



Regularized regession
regularization is a technique used to avoid overfitting
fitting a linear regression model minimizes a loss function to chooses a coefficient 
(a) for each feature and the intercept (b)
large coefficients can lead to overfitting
common practice to alther the loss function so that it penalizes large coefficients
this is what regularization does

Ridge regression is a type of regularized regression
loss function = OLS loss function + alpha * sum of the squared value of each 
coefficient
*when minimizing the loss funciton, models are penalized for coefficients with 
large positive or negative values
*need to choose the alpha in order to fit and predict
essentially we can select the alpha for which our model perfomrs best
similar to picking k in KNN
alpha is known as a hyperparameter, ie a variable used for selecting a modelʼs 
parameters
alpha controls model complexity
**when alpha is 0, we are performing OLS, where large coefficients are not 
penalized and overfitting may occur
a high alpha means the large coefficients are significantly penalized; this can lead 
to underfitting

from sklearn.linear_model import Ridge
to highlight the impact of different alpha values, we create an empty list for our 
scores, then loop through a list of different alpha values
scores = [ ] 
for alpha in [0.1, 1.0, 10.0, 100.0, 1000.0]:
#intstantiate Ridge, setting the ‘alphaʼ argument to the iterator (also called alpha 
in this example)

ridge = Ridge(alpha=alpha)
#train the data

ridge.fit(X_train, y_train)
#predict

y_pred = ridge.predict(X_test)
#save the modelʼs R-squared value to the scores lis

scores.append(ridge.score(X_test, y_test))
print(scores)
output > in our example we see .28>>>.19, performance gets worse as alpha 
increases

Lasso regression



another type of regularized regression
loss function = OLS loss function + alpha * sum of absolute value of each 
coefficient

example - similar to Ridge workflow
from sklearn.linear_model import Lasso
scores = [ ] 
for alpha in {0.01, 1.0, 10.0, 20.0, 50.0]:
#instantiate Lasso, and setting alpha argument to iterator (in this case also called 
‘alphaʼ)

lasso = Lasso(alpha=alpha)
lasso.fit(X_train, y_train)
lasso_pred = lasso.predict(X_test)

#save the modelʼs values and append them to the ‘scoresʼ list
scores.append(lasso.score(X_test, y_test))

print(scores)

Lasso can be used to assess feature importance
**this is because it tends to shrink teh coefficients of less important features to 
zero
the features whose coefficients are not shrunk to zero are selected by the lasso 
algorithm

Example - Lasso for feature selection in scikit
from sklearn.linear_model import Lasso
X = diabetes_df.drop(‘glucose,̓ axis=1).values
#reminder ‘axisʼ argument states if we are dropping rows (axis=0) or columns 
(axis=1)
y = diabetes_df[‘glucoseʼ].values
names = diabetes_df.drop(‘glucose,̓ axis=1).columns
#used .columns attribute to access the feature names and store them as variable 
names
lasso = Lasso(alpha=0.1)
#alpha argument within the instantitation
lasso_coef = lasso.fit(X, y).coef__
#extract the coefficients using the .coef_ attribute
plt.bar(names, lasso_coef)
plt.xticks(rotation=45)
plt.show()



not surprising but shows us that a diabetes diagnosis is the most important 
predictor of our target variable
graph works as a great sanity check

Another example
# Import Lasso
from sklearn.linear_model import Lasso

# Instantiate a lasso regression model
lasso = Lasso(alpha=0.3)

# Fit the model to the data
lasso.fit(X, y)

# Compute and print the coefficients
lasso_coef = lasso.fit(X, y).coef_
print(lasso_coef)
plt.bar(sales_columns, lasso_coef)
plt.xticks(rotation=45)



plt.show()

How good is your model?
Classification metrics
-measuring model performance with accuracy
accuracy metric has its shortcomings
example - fraudulent bank transactions where presumed 99% are legitmate and 
1% are fraudulent
we could build a classifier that predicts all transactions are legitmate 
this modelʼs accuracy would be 99%!
but it would be useless in determining fraudulent transactions
**this is called class imbalance (ie uneven frequency of classes)

Confusion matrix for assessing a binary classification performance
this is a 2x2 matrix

The class of interest is called the positive class
here we aim to detect fraud > the positive class is an illegitamate transaction
confusion matrix still gives us the accuracy matrix > (tp + tn) / (tp + tn + fp + fn)
also get precision > tp / tp +fp
precision is also called the positive predictive value
high precision = lower false positive rate
our example high precision translates to fewer legitimate transactions being 
classified as fraudulent
also get recall > tp / tp + fn
also called sensitivity
high recall = lower false negative rate
our example high recall means predicting most fraudulent transactions correctly
also get F1 score
F1 Score = 2 * ((precision * recall) / (precision + recall))
F1 Score is the harmonic mean of precision and recall
gives equal weight to precision and recall, which means it factors in both the 
number of errors made by the model and the type of errors
*F1 score favors models with similar precision and recall
is a useful metric if we are seeking a model which performs reasonably well across 



both metrics

from sklearn.metrics import classification_report, confusion_matrix
knn = KNeighborsClassifier(n_neighbors=7)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, 
random_state=42)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print(confusion_matrix(y_test, y_pred)
print(classification_report(y_test, y_pred))

Logisitic regression is used for classification
logistic regression ouputs probabilities
model calculates the probability (p) that an observation belongs to a binary class
if p > 0.5, data is labeled 1
if p < 0.5, data is labeled 0
example with diabetes dataset
p > 0.5, labeled with diabetes
p < 0.5, labeled without diabetes
creates a linear decision boundary

from sklearn.linear_model import LogisticRegression



logreg = LogisticRegression()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=42)
logreg.fit(X_train, y_train)
logreg.predict(X_test)
We can predict probabilities of each instance belonging to a class by calling 
logistic regressionʼs ‘predict_probaʼ method
returns a 2D array with probabilities for both classes 
in our example its the probability of churn or not churn
#slice the second column, representing the positive class probabilities
y_pred_probs = logreg.predict_proba(X_test)[:, 1 ]
print(y_pred_probs[0])
output > 0.089 probability that the first observation has churned

Default probability threshold is 0.5
what happens if we change this?
The ROC curve
receiver operating characteristic
this allows us to visualize how different thresholds affect the true positive and 
false positive rates
when threshold equals zero > model predicts one for all observations, meaning it 
will correctly predict all positive values and incorrectly predict all negative values
when threshold equals one > model predicts zero for all observations, which 
means that both true and false positive rates are zero



from sklearn.metrics import roc_curve
#pass test labels as first argument, predicted probabilities as second argument
#unpack the results into three variables: false positive rate, true positive rate, and 
thresholds
fpr, tpr, thresholds = roc_curve(y_test, y_pred_probs)
plt.plot([0,1], [0,1], ‘k—‘)
plt.plot(fpr, tpr)
plt.xlabel(‘False Positive Rateʼ)
plt.ylabel(‘True Positive Rateʼ)
plt.title(‘Logisitic Regression ROC Curveʼ)
plt.show()

So how do we quantify the modelʼs performance based on this plot?
if we have a model with 1 for tpr and 0 for fpr, then we have the perfect model
to calculate in between > we measure the area under the curve (AUC)
ouput referred to as scores 
range is from zero to one, with one being ideal
above gives us a score of p=0.67
this is only 34% better than a model making random guesses
from sklearn.metrics import roc_auc_score
print(roc_auc_score(y_test, y_pred_probs))
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calculated by using the modelʼs predict_proba method on X_test

How to optimize your model?
hyperparameter tuning
examples are alpha and n_neighbors
how to choose the correct hyperparameters

try lots of different hyperparameter values
fit all of them separately
see how well they perform
choose the best performing values

**when fitting different hyperparameter values, we use cross-validation to avoid 
overfitting the hyperparameters to the test set
still split the data, but perform cross-validation on the training set
we withhold the test set and use it for evaluating the tuned model

One tuning method - Grid search cross-validation
choose a grid of possible hyperparameter values to try
example - KNN model, search across different n_neighbors and a type of metric
perform k-fold CV for each combination 

from sklearn.model_selection import GridSearchCV
#instantiate KFold
kf = KFold(n_splits=5, shuffle=True, random_state=42)
#create a dictionary specifying the names and values of the hyperparameters as 
keys and values
param_grid = {‘alpha :̓ np.arange(0.0001, 1, 10), ʼsolver :̓ [‘sag,̓ ‘lsqrʼ]}
#ʼsolverʼ hyperparameter refers to the optimization algorithm used to find the 
optimal weights or coefficients for the model during the training process
#there are many options for solver and vary depending on the model
#instantiate Ridge
ridge = Ridge()
#call GridSearchCV and pass it our model, the grid we wish to tune over, and set 
our cross-validation 
ridge_cv = GridSearchCV(ridge, parm_grid, cv=kf)



#this returns a GridSearch object that we can then fit to the training data
#this fit performs the actual cross-validated grid search
ridge_cv.fit(X_train, y_train)
#.best_params_ and .best_score_ attributes will retrieve the hyperparameters that 
perform best along with that specific mean cross-validation score
print(ridge_cv.best_params_, ridge_cv.best_score_)

GridSearch has limitations
it doesnʼt scale well
10 fold CV, 3 hyperparameters, 30 total values = 900 fits

Another way - RandomizedSearchCV
picks random hyperparameter values rather than exhaustively searching through 
all options
from sklearn.model_selection import RandomizedSearchCV
kf = KFold(n_splits=5, shuffle=True, random_state=42)
param_grid = {‘alpha :̓ np.arange(0.0001, 1, 10), ‘solver :̓ [‘sag,̓ ‘lsqrʼ]}
ridge = Ridge()
#ʼn_iterʼ argument determines the number of hyperparameter values tested
#example five-fold CV with n_iter set to 2 will perform 10 fits
ridge_cv = RandomizedSearchCV(ridge, param_grid, cv=kf, n_iter=2)
ridge_cv.fit(X_train, y_train)
print(ridge_cv.best_params_, ridge_cv.best_score_)

Evaluate on the test set
by passing it to a call of the random search objectʼs .score method
test_score = ridge_cv.score(X_test, y_test)
print(test_score)
**in this example it actually performs slightly better than the best score in our grid 
search

Preprocessing data
remember that scikit requires numeric data and no missing values 
in real-world data this is rarely the case
this is where preprocessing comes in

example - dealing with categorical features
convert categorical features into numeric values
how does this work?
we use what is called ‘dummyʼ variables
converts cat feature into a binary feature
where 0 = observation was not that cat
and 1 = observation was that cat



each row is one song > each song has one genre
this means we get one 1 on each row and nine 0ʼs 
**be careful of duplicating information
***Not fully grasping this concept on why and when a duplicate column would be 
created
More info:
Duplicates can form with dummy variables when encoding categorical variables 
using one-hot encoding or dummy encoding. One-hot encoding is a common 
technique used to convert categorical variables into numerical format, 
representing each category as a binary column (0 or 1).

Here's how duplicates can form with dummy variables:

1. **Categorical Variables:**
   Let's say you have a categorical variable called "Color" with possible categories: 
"Red," "Blue," and "Green."

2. **Dummy Encoding:**
   Dummy encoding creates binary columns for each category in the original 
categorical variable. For example, using one-hot encoding, you'll create three 
binary columns: "Red," "Blue," and "Green." Each row in the dataset will have a 1 in 
the corresponding binary column for the color it belongs to and 0 in the other two 
binary columns.

   ```
   Original Data:
   Color
   Red
   Blue
   Green
   Red
   Blue



   Dummy Encoding:
   Red   Blue   Green
   1     0      0
   0     1      0
   0     0      1
   1     0      0
   0     1      0
   ```

3. **Duplicate Categories:**
   Now, imagine you have a dataset where two rows have the same categorical 
value, say "Red." When dummy encoding is performed, two binary columns will 
have 1 for the "Red" category, resulting in duplicate columns.

   ```
   Original Data:
   Color
   Red
   Blue
   Green
   Red
   Blue
   Red

   Dummy Encoding:
   Red   Blue   Green
   1     0      0
   0     1      0
   0     0      1
   1     0      0
   0     1      0
   1     0      0
   ```

4. **Duplicate Columns:**
   In the dummy encoded result, you can see that the first and the last rows both 
have 1 in the "Red" column, indicating the same category. This leads to duplicate 
columns in the dataset, which can cause issues during model training and affect 
the model's performance.

To avoid duplicates when using dummy variables, you should consider one of the 
following approaches:



- Drop one of the dummy columns for each categorical variable to avoid 
multicollinearity. This is known as "dummy variable trap."
- Use "drop_first=True" argument while performing one-hot encoding in libraries 
like pandas or scikit-learn. This automatically drops the first dummy column to 
avoid the trap.

By properly handling duplicate columns, you can ensure that the dummy encoding 
represents the categorical variable accurately and doesn't introduce redundancies 
in the data. 

Can create dummy variables with scikit or pandas
scikit > OneHotEncoder()
pandas > get_dummies()

example - music dataset (‘popularity :̓ target variable and ‘genre :̓ categorical 
feature)
import pandas as pd
music_df = pd.read_csv(‘music.csvʼ)
#pass the categorical column
#to avoid duplicates and to increase computing efficiency we only need nine out 
of ten binary features
#argument ‘drop_firstʼ set to True takes care of this
music_dummies = pd.get_dummies(music_df[‘genreʼ], drop_first=True)
#bring these binary features back into our original DF with pd.concat
#bring in as columns so use ‘axisʼ argument set to 1
music_dummies = pd.concat([music_df, music_dummies]), axis=1)
#remove original categorical ‘genreʼ column
music_dummies = music_dummies.drop(‘genre,̓ axis=1)

pandas and Python are smart
if only one categorical feature, we can pass the entire DF
pandas will prefix (in our example - genre_Rap and so on) the new binary columns 
and get drop the original categorical column 
 
once our dummy variables are set, we can fit models as before
from sklearn.model_selection import cross_val_score, KFold
from sklearn.linear_model import LinearRegression
X = music_dummies.drop(‘popularity ,̓ axis=1).values
y = music_dummies[‘popularityʼ].values
X_train, X_test, y_train, y_test = (X, y, test_size=0.2, random_state=42)
#create a kf object
kf = KFold(n_splits=5, shuffle=True, random_state=42)
#instantiate a linear regression model



linreg = LinearRegression()
#call cross_val_score
linreg_cv = cross_val_score(linreg, X_train, y_train, cv=kf, 
scoring=‘neg_mean_squared_errorʼ)
#we set scoring equal to neg_mean_squared_error > this returns negative MSE
#why? - scikit CV metrics presume a higher score is better, so MSE is changed to 
negative to counteract this
#calculate the training RMSE and convert to positive 
print(np.sqrt(-linreg_cv))

Handling missing data
inspect your dataset
print(music_df.isna(),sum().sort_values())

Dropping missing data
common approach is to remove missing observations accounting for less than 5% 
of all data
example
#use the .dropna() method and pass the columns with less than 5% missing data 
to the subset argument
music_df = music_df.dropna(subset[‘cols_with_<5%,̓ …])
*if there are missing values in our subset column, the entire row is removed

Another option - imputing values
imputation > use subject-matter expertise to replace missing data with educated 
guesses
common to use the ‘meanʼ
can also use th median
for categorical values, we typically use the most frequent value (the mode)
**must split our data first, to avoid data leakage
must split our data before imputing to avoid leaking test set information to our 
model

Sidebar - **More on data leakage
Data leakage, also known as data snooping or data peeking, occurs when 
information from outside the training dataset is used inappropriately to create a 
machine learning model or make predictions, leading to overly optimistic or biased 
results. It is a critical issue in machine learning as it can severely impact the 
model's performance and generalization to new, unseen data.

Data leakage can take different forms, but the common theme is that information 
that should not be available at the time of prediction is inadvertently included in 
the training or evaluation process. This extra information can cause the model to 



learn patterns or relationships that do not exist in the real world, leading to 
inaccurate or unrealistic predictions.

Some common examples of data leakage include:

1. **Train-Test Split Leakage:**
   Splitting the data into training and testing sets should be done before any data 
preprocessing or feature engineering. If feature scaling, imputation, or other data 
transformations are applied before splitting, information from the testing set might 
have leaked into the training set, leading to overfitting and optimistic performance 
estimates.

2. **Target Leakage:**
   Target leakage occurs when the target variable (the variable to be predicted) is 
inadvertently included as a feature during model training. For example, predicting 
credit card defaults based on past due payments would introduce target leakage, 
as past due payments are caused by credit card defaults.

3. **Temporal Leakage:**
   In time-series data, temporal leakage occurs when information from the future is 
used to predict the past. For instance, using future stock prices to predict past 
stock prices would introduce temporal leakage.

4. **Information Leakage:**
   Including variables in the model that would not be available at the time of 
prediction can lead to information leakage. For instance, using future customer 
behavior data to predict current customer churn.

To prevent data leakage, it is essential to maintain a strict separation between 
training and testing data, avoid using information that would not be available at the 
time of prediction, and be mindful of any data transformations or feature 
engineering steps that could inadvertently include future or target-related 
information.

Data leakage can lead to models that perform well on the training data but fail to 
generalize to new data, making them unreliable for real-world applications. 
Ensuring data integrity and preventing leakage is critical for building robust and 
trustworthy machine learning models.

example - imputation workflow
#different imputation methods for numeric and categorical features
#split and store features via categorical or numeric (here we use X_cat or X_num)
from sklearn.impute import SimplImputer



X_cat = music_df[‘genreʼ].values.reshape(-1, 1)
X_num = music_df.drop([‘genre,̓ ‘popularityʼ], axis=1).values
y = music_df[‘popularityʼ].values
#make separate training and test sets for the categorical features and the numeric 
features
#key to use the same random seed for both sets, this ensures target (y) arrayʼs 
values remain unchanged
X_train_cat, X_test_cat, y_train, y_test = train_test_split(X_cat, y, test_size=0.2, 
random_state=12)
X_train_num, X_test_num, y_train, y_test = train_test_split(X_num, y, test_size=0.2, 
random_state=12)
#instantiate a SimpleImputer()
#use ‘strategyʼ argument set to ‘most_frequentʼ to use mode to impute missing 
categorical values
imp_cat = SimpleImputer(strategy=‘most_frequentʼ)
X_train_cat = imp_cat.fit_transform(X_train_cat)
X_test_cat = imp_cat.transform(X_test_cat)

Why we use fit_transform
After imputing the missing values, the next step is to transform the dataset to 
make it suitable for training a machine learning model. This is where the 
`fit_transform` method comes into play.

The reason we use `fit_transform` instead of just `fit` after imputing is that 
`fit_transform` combines two steps in one:

1. **Fit:**
   During the "fit" step, the imputer estimates the parameters required for imputing 
the missing values. For example, in the case of mean imputation, the imputer 
calculates the mean of each feature based on the available data and stores it as an 
internal attribute.

2. **Transform:**
   The "transform" step uses the estimated parameters from the "fit" step to fill in 
the missing values in the dataset with the appropriate imputed values.

By using `fit_transform`, we avoid having to perform these two steps separately. It 
simplifies the process and ensures that the same estimated parameters obtained 
during the "fit" step are used consistently when transforming the data.

Why we also need to transform the test set
After imputing missing values in the training set, it is essential to also transform 
the test set using the same imputer to ensure consistency and prevent data 



leakage. The reasons for transforming the test set after imputation are as follows:

1. **Consistency with Training Set:**
   During the training phase, the imputer estimated parameters (e.g., mean, 
median, or most frequent value) from the available data in the training set. These 
estimated parameters were used to fill in the missing values. By transforming the 
test set with the same imputer, you ensure that the imputed values in the test set 
are consistent with the training set. This consistency is crucial because the model 
has been trained on the training set using the imputed values, and it expects the 
same data format during prediction.

2. **Preventing Data Leakage:**
   If you were to use a separate imputer for the test set, there is a risk of data 
leakage. Data leakage occurs when information from the test set, or future data, 
inadvertently leaks into the training phase. It can lead to over-optimistic model 
performance and unrealistic predictions. By using the same imputer for both the 
training and test sets, you avoid this potential issue.

3. **Maintaining Data Integrity:**
   Transforming the test set ensures that the entire dataset (both training and test 
sets) is consistent and properly preprocessed. This consistency helps maintain the 
integrity of the data and ensures that the test set is in the same format as the 
training set when the model was trained.

This ensures that both sets have consistent imputed values before training and 
testing the machine learning model.

Example contʼd from above:
now impute the numeric data
#instantiate another imputer
imp_num = SimpleImputer()
#fit and transform the training features
#transform the test features
X_train_num = imp_num.fit_transform(X_train_num)
X_test_num = imp_num.transform(X_test_num)
#now combine our training data using numpy append() method
#pass the two arrays and set as columns
#repeat for the test data
X_train = np.append(X_train_num, X_train_cat, axis=1)
X_test = np.append(X_test_num, X_test_cat, axis=1)
**due to their ability to transform our data, imputers are known as transformers

Imputing with a pipeline



a pipeline is an object used to run a series of transformations and build a model in 
a single workflow
example
from sklearn.pipeline import Pipeline
#dropn missing values accounting for less that 5% of our data
music_df = music_df.dropna(subset=[‘genre,̓ ‘popularity ,̓ ‘loudness,̓ ‘liveness,̓ 
‘tempoʼ])
#convert values in ‘genre,̓ our target, to a 1 if Rock, else 0 with the np.where() 
method 
music_df[‘genreʼ] = np.where(music_df[‘genreʼ] == ‘Rock,̓ 1, 0)
#create X and y
X = music_df.drop(‘genre,̓ axis=1).values
y = music_df[‘genreʼ].values
#next to build a pipeline, construct a list of steps containing tuples with the step 
names specified as strings
steps = [(‘imputation,̓ SimpleImputer()), (‘logistic_regression,̓ 
LogisticRegression())]
#instantiate a Pipeline
pipeline = Pipeline(steps)
#split and fit our data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 
random_state=42)
pipeline.fit(X_train, y_train)
#compute accuracy
pipeline.score(X_test, y_test)

**in a pipeline, each step but the last must be a transformer
what does this mean?
In the context of building a pipeline in machine learning, the statement "each step 
but the last must be a transformer" means that all the steps in the pipeline, except 
the final step, should be instances of transformer objects. A transformer is an 
object that implements the `fit` and `transform` methods, which allows it to 
preprocess the data and perform feature engineering.

The pipeline is a convenient way to chain multiple data preprocessing steps and 
machine learning models together. It ensures that the data flows seamlessly 
through each step, allowing you to combine data preprocessing and model training 
into a single workflow.

Here's an example of a pipeline with two steps, where the first step is a 
transformer, and the last step is a machine learning model:

```python



from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

# Step 1: Define the pipeline with a list of tuples containing step names and 
transformers
steps = [
    ('scaling', StandardScaler()),    # Transformer for data scaling
    ('model', LogisticRegression())   # Machine learning model
]

# Step 2: Create the pipeline by passing the steps list to Pipeline
pipeline = Pipeline(steps)

# Step 3: Split the data into training and test sets (not shown here)

# Step 4: Fit the pipeline to the training data
pipeline.fit(X_train, y_train)

# Step 5: Compute accuracy on the test data using the pipeline
accuracy = pipeline.score(X_test, y_test)
print("Accuracy:", accuracy)
```

In this example, the pipeline consists of two steps: data scaling and logistic 
regression. The `StandardScaler` is a transformer that performs data scaling, and 
`LogisticRegression` is a machine learning model. The pipeline ensures that the 
data is first scaled using the `StandardScaler` before being passed to the 
`LogisticRegression` model for training.

The last step in the pipeline, in this case, is the machine learning model 
(`LogisticRegression`). Since it is not a transformer but a model, it is exempt from 
the requirement of being a transformer.

By enforcing that all steps but the last should be transformers, pipelines ensure 
that the data preprocessing and feature engineering are applied consistently 
during both training and prediction, helping to avoid data leakage and potential 
issues with inconsistent preprocessing.

Centering and scaling
also referred to as normalizing or standardizing our data
many ML models us some form of distance to inform them
**if we have features on far larger scales, they can disproportionately influence 



our model
example is KNN, which explicitly uses distance when making predictons

***Several ways to scale our data
Standardization > given any column, we can subtract the mean and divide by the 
variance so that all features are centered around 0 and have a variance of 1
Normalization > subtract the minimum and divide by the range of the data so the 
normalized dataset has minimum 0 and maximum 1
Or we can also ‘normalizeʼ by centering our data so that the range is -1 to 1
**scikit has multiple functions availabe for other types of scaling

example - standardization 
from sklearn.preprocessing import StandardScaler
#create feature and target arrays
X = music_df.drop(‘genre,̓ axis=1).values
y = music_df[‘genreʼ].values
#before scaling, split our data to avoid data leakage
X_train, _test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42)
#instantiate StandardScaler object
scaler = StandardScaler()
#fit and transform
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
print(np.mean(X), np.std(X))
print(np.mean(X_train_scaled), np.std(X_train_scaled))
*looking at the mean and std of the columns verifies the change has taken place

example - scaling in a pipeline
steps = [(‘scaler ,̓ StandardScaler()), (‘knn,̓ KNeighborsClassifier(n_neighbors=6))]
pipeline = Pipeline(steps)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=21)
knn_scaled = pipeline.fit(X_train, y_train)
y_pred = knn_scaled.predict(X_test)
print(knn_scaled.score(X_test, y_test))
output > 0.81
compared to unscaled 0.53
**nearly 30% increase in our models accuracy just by scaling

example - CV and scaling in a pipeline
from sklearn.model_selection import GridSearchCV
steps = [(‘scaler ,̓ StandardScaler()), (‘knn,̓ KNeighborsClassifier())]
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pipeline = Pipleline (steps)
#**create key (pipeline step name followed by a double underscore, followed by 
the desired hyperparameter)
#value to the key is a list or an array of the values to try for that particular 
hyperparameter
parameters = {‘knn__n_neighbors :̓ np.arange(1, 50)}
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, 
random_state=21)
cv = GridSearchCV(pipeline, param_grid=parameters)
cv.fit(X_train, y_train)
print(cv.best_score_) > ouput 82%
print(cv.best_params_) ouput knn 12

Another example - calculate R-squared off pipeline
# Import StandardScaler
from sklearn.preprocessing import StandardScaler

# Create pipeline steps
steps = [("scaler", StandardScaler()),
         ("lasso", Lasso(alpha=0.5))]

# Instantiate the pipeline
pipeline = Pipeline(steps)
pipeline.fit(X_train, y_train)

# Calculate and print R-squared
print(pipeline.score(X_test, y_test))

How do we decide which model to use in the first place?
complex question that depends on the situation 
but there are some guiding principles:

size of the dataset
fewer features = simpler model and faster training time
some models (like Artificial Neural Networks) require large amounts of 
data to perform well

interpretability
who are the stakeholders?
do we need to explain granularly how the model got the predictions?
linear regression has high interpretability because we can understand the 
coefficients

flexibility 
may improve accuracy, by making fewer assumptions about the data
KNN is a more flexible model because it does not assume a linear 
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relationship between the features and the target

Itʼs all in the metrics
scikit conveniently allows the same methods to be used on most models
this makes for easy comparing
Regression model performance: 

RMSE
R-squared

Classification model performance:
accuracy
confusin matrix 
precision, recall, F1-score
ROC AUC

*one approach is to select several models and a metric, then evaluate their 
performance without any form of hyperparameter tuning

Remember - best to scale our data before evaluating models
Models affected by scaling: 

KNN
Linear Regression including Ridge and Lasso
Logistic Regression
Artificial Neural Network

Evaluating classification models



here we are creating a dictionary with our model names as strings for the keys, an 
instantiate models as the dictionaryʼs values
create an empty list to store the results
loop through the models in our models dictionary using the .values() method
inside the loop we instantiate a KFold object
perform cv, using the mode being iterated, along with our scaled training features 
and target training array
set cv argument to our KFold variable ‘kfʼ
default cross_val_score is accuracy
append results to our results list
create a boxplot
set the labels argumen equal to a call of models.keys() to retrieve each modelʼs 
name



orange line in each box represents each modelʼs median cross-validation score

Test set performance
#loop through the names and values of the dictionary using the .items() method
for name, model in models.items():
#fit the model

model.fit(X_train_scaled, y_train)
#calculate metric accuracy

test_score = model.score(X_test_scaled, y_test)
print(‘{} Test Set Accuracy: {} .̓format(name, test_score))

Another example
# Create models dictionary
models = {"Logistic Regression": LogisticRegression(), "KNN": 
KNeighborsClassifier(), "Decision Tree Classifier": DecisionTreeClassifier()}
results = []

# Loop through the models' values
for model in models.values():
  
  # Instantiate a KFold object



  kf = KFold(n_splits=6, random_state=12, shuffle=True)
  
  # Perform cross-validation
  cv_results = cross_val_score(model, X_train_scaled, y_train, cv=kf)
  results.append(cv_results)
plt.boxplot(results, labels=models.keys())
plt.show()




